[1] Beer G A.The Hausdorff metric and convergence in measure. Michigan Math J, 1974, 21: 63-64 [2] Beer G A.Starshaped sets and the Hausdorff metric. Pacific J Math, 1975, 61(1): 21-27 [3] Bianchi G, Klain D A, Lutwak E, et al.A countable set of directions is sufficient for Steiner symmetrization. Adv Appl Math, 2011, 47(4): 869-873 [4] Campi S, Gronchi P.The Lp-Busemann-Petty centroid inequality. Adv Math, 2002, 167: 128-141 [5] Cormier R J.Steiner symmetrization in En. Rev Mat Hisp-Amer, 1971, 31(4): 197-204 [6] Gardner R J.On the Busemann-Petty problem concerning central sections of centrally symmetric convex bodies. Bull Amer Math Soc, 1994, 30: 222-226 [7] Gardner R J.Intersection bodies and the Busemann-Petty problem. Trans Amer Math Soc, 1994, 342: 435-445 [8] Gardner R J.A positive answer to the Busemann-Petty problem in three dimensions. Ann of Math, 1994, 140: 435-447 [9] Gardner R J.The Brunn-Minkowski inequality. Bull Amer Math Soc, 2002, 39(3): 355-405 [10] Gardner R J. Geometric Tomography.Cambridge: Cambridge University Press, 2006 [11] Gardner R J.The dual Brunn-Minkowski theory for bounded Borel sets: dual affine quermassintegrals and inequalities. Adv Math, 2007, 216: 358-386 [12] Gardner R J, Volčič A.Tomography of convex and star bodies. Adv Math, 1994, 108: 367-399 [13] Gruber P M.Convex and Discrete Geometry. Berlin: Springer, 2007 [14] Haberl C.Star body valued valuations. Indiana Univ Math J, 2009, 58(5): 2253-2276 [15] Huang Y, Lutwak E, Yang D, et al.Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems. Acta Math, 2016, 216: 325-388 [16] Lin Y.Smoothness of the Steiner symmetrization. Proc Amer Math Soc, 2018, 146(1): 345-357 [17] Lin Y.Affine Orlicz Pólya-Szegö principle for log-concave functions. J Funct Anal, 2017, 273: 3295-3326 [18] Ludwig M.Intersection bodies and valuations. Amer J Math, 2006, 128: 1409-1428 [19] Ludwig M, Xiao J, Zhang G.Sharp convex Lorentz-Sobolev inequalities. Math Ann, 2011, 350(1): 169-197 [20] Lutwak E.Dual mixed volumes. Pacific J Math, 1975, 58: 531-538 [21] Lutwak E.Dual cross-sectional measures. Atti Accad Naz Lincei, 1975, 58: 1-5 [22] Lutwak E, Yang D, Zhang G.Lp affine isoperimetric inequalities. J Differential Geom, 2000, 56(1): 111-132 [23] Lutwak E, Yang D, Zhang G.Orlicz centroid bodies. J Differential Geom, 2010, 84(2): 365-387 [24] Maz'ya V. Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Heidelberg: Springer, 2011 [25] Schneider R.Convex Bodies, the Brunn-Minkowski Theory. Cambridge: Cambridge University Press, 2014 [26] Volčič A.On iterations of Steiner symmetrizations. Ann Mat Pura Appl, 2016, 195(5): 1685-1692 [27] Webster R.Convexity. New York: Oxford University Press, 1994 [28] Zhang G.A positive solution to the Busemann-Petty problem in $\mathbb{R}^{4}$. Ann Math, 1999, 149: 535-543 [29] Zhu G.The Orlicz centroid inequality for star bodies. Adv in Appl Math, 2012, 48(2): 432-445 |