[1] Albeverio S, Brzeźniak Z, Wu J.Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients. J Math Anal Appl, 2010, 371: 309-322 [2] Barton-Smith M.Global solution for a stochastic Ginzburg-Landau equation with multiplicative noise. Stochastic Anal Appl, 2004, 22(1): 1-18 [3] de Bouard A, Hausenblas E. The nonlinear Schrödinger equation driven by jump processes. J Math Anal Appl, 2019, 475(1): 215-252 [4] de Bouard A, Hausenblas E, Ondreját M. Uniqueness of the nonlinear Schrödinger equation driven by jump processes. Nonlinear Differential Equations Appl, 2019, 26(3): 22 [5] Budhiraja A, Chen J, Dupuis P.Large deviations for stochastic partial differential equations driven by a Poisson random measure. Stochastic Process Appl, 2013, 123: 523-560 [6] Budhiraja A, Dupuis P.A variational representation for positive functionals of an infinite dimensional Brownian motion. Probab Math Statist, 2000, 20(1): 39-61 [7] Budhiraja A, Dupuis P, Maroulas V.Large deviations for infinite dimensional stochastic dynamical systems. Ann Probab, 2008, 36(4): 1390-1420 [8] Budhiraja A, Dupuis P, Maroulas V.Variational representations for continuous time processes. Ann Inst Henri Poincaré Probab Stat, 2011, 47(3): 725-747 [9] Cao Z, Guo B, Wang B.Global existence theory for the two dimensional derivative Ginzburg-Landau equation. Chinese Sci Bull, 1998, 43(5): 393-395 [10] Dong Z, Wu J, Zhang R, et al.Large deviation principles for first-order scalar conservation laws with stochastic forcing. Ann Appl Probab, 2020, 30(1): 324-367 [11] Dong Z, Zhang R.3D tamed Navier-Stokes equations driven by multiplicative Lévy noise: existence, uniqueness and large deviations. J Math Anal Appl, 2020, 492(1): 124404 [12] Duan J, Holmes P, Titi E.Global existence theory for a generalized Ginzburg-Landau equation. Nonlinearity, 1992, 5(6): 1303-1314 [13] Flandoli F, Gatarek D.Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab Theory Related Fields, 1995, 102: 367-391 [14] Gao H, Wang X.On the global existence and small dispersion limit for a class of complex Ginzburg-Landau equations. Math Methods Appl Sci, 2009, 32(11): 1396-1414 [15] Ginibre J, Velo G.The Cauchy problem in local spaces for the complex Ginzburg-Landau equation I. Compactness methods. Phys D, 1996, 95(3/4): 191-228 [16] Guo B, Gao H.Finite-dimension behaviour for a generalized Ginzburg-Landau equation. Prog Nat Sci, 1995, 5(5): 599-610 [17] Ikeda N, Watanabe S.Stochastic Differential Equations and Diffusion Processes. Amsterdam: North- Holland, 1981 [18] Leoni G.A first Course in Sobolev Spaces. Providence, RI: Amer Math Soc, 2017 [19] Levermore C, Oliver M.The complex Ginzburg-Landau equation as a model problem//Deift P, Levermore C, Wayne C. Dynamical Systems and Probabilistic Methods in Partial Differential Equations. Providence, RI: Amer Math Soc, 1996: 141-190 [20] Li Y, Guo B.Global existence of solutions to the derivative 2D Ginzburg-Landau equation. J Math Anal Appl, 2000, 249: 412-432 [21] Lin L, Gao H.A stochastic generalized Ginzburg-Landau equation driven by jump noise. J Theor Probab, 2019, 32: 460-483 [22] Lions J.Quelques Méthodes de Résolution ds Problèmes aux Limites Non Linéairess. Paris: Dunod, 1969 [23] Liu W, Song Y, Zhai J, et al. Large and moderate deviation principles for Mckean-Vlasov SDEs with jumps. Potential Anal, 2022. https://doi.org/10.1007/s11118-022-10005-0 [24] Liu W, Tao C, Zhu J.Large deviation principle for a class of SPDE with locally monotone coefficients. Sci China Math, 2020, 63: 1181-1202 [25] Matoussi A, Sabbagh W, Zhang T.Large deviation principles of obstacle problems for quasilinear stochastic PDEs. Appl Math Optim, 2021, 83: 849-879 [26] Pu X, Huang T.Large deviations for the 2-D derivative Ginzburg-Landau equation with multiplicative noise. Appl Math Lett, 2019, 93: 46-51 [27] Röckner M, Zhang T.Stochastic evolution equations of jump type: existence, uniqueness and large deviation principles. Potential Anal, 2007, 26: 255-279 [28] Swiech A, Zabczyk J.Large deviations for stochastic PDE with Lévy noise. J Funct Anal, 2011, 260: 674-723 [29] Temam R.Navier-Stokes Equations and Nonlinear Functional Analysis. Philadelphia: SIAM, 1983 [30] Wang G, Guo B.The asymptotic behavior of the stochastic Ginzburg-Landau equation with additive noise. Appl Math Comput, 2008, 198: 849-857 [31] Wang R, Zhang S, Zhai J.Large deviation principle for stochastic Burgers type equation with reflection. Commun Pure Appl Anal, 2022, 21(1): 213-238 [32] Wu W, Zhai J.Large deviations for stochastic porous media equation on general measure space. J Differential Equations, 2020, 269: 10002-10036 [33] Xiong J, Zhai J.Large deviations for locally monotone stochastic partial differential equations driven by Lévy noise. Bernoulli, 2018, 24: 2429-2460 [34] Xu T, Zhang T.Large deviation principles for 2-D stochastic Navier-Stokes equations driven by Lévy processes. J Funct Anal, 2009, 257(5): 1519-1545 [35] Yang D.The asymptotic behavior of the stochastic Ginzburg-Landau equation with multiplicative noise. J Math Phys, 2004, 45: 4064-4076 [36] Yang D.On the generalized 2-D stochastic Ginzburg-Landau equation. Acta Math Sin, 2010, 26(8): 1601-1612 [37] Yang D, Hou Z.Large deviations for the stochastic derivative Ginzburg-Landau equation with multiplicative noise. Phys D, 2008, 237(1): 82-91 [38] Yang L, Pu X.Large deviations for stochastic 3D cubic Ginzburg-Landau equation with multiplicative noise. Appl Math Lett, 2015, 48: 41-46 [39] Yang X, Zhai J, Zhang T.Large deviations for SPDEs of jump type. Stoch Dyn, 2015, 15(4): 1-30 [40] Zhai J, Zhang T.Large deviations for 2-D stochastic Navier-Stokes equations with multiplicative Lévy noises. Bernoulli, 2015, 21: 2351-2392 [41] Zhang R, Zhou G.Large deviations for nematic liquid crystals driven by pure jump noise. Math Methods Appl Sci, 2018, 41(14): 5552-5581 |