数学物理学报 ›› 2024, Vol. 44 ›› Issue (5): 1311-1318.

• • 上一篇    下一篇

高斯三角阵的聚集点过程与部分和的联合渐近行为

鲁盈吟1,张文静1,郭金辉2,*()   

  1. 1西南石油大学理学院 成都 610500
    2西南财经大学统计学院 成都 611130
  • 收稿日期:2023-09-05 修回日期:2024-03-01 出版日期:2024-10-26 发布日期:2024-10-16
  • 通讯作者: *郭金辉, E-mail: guojinhui94@163.com
  • 基金资助:
    四川省自然科学基金(2022NSFSC1838)

Joint Behavior of Point Process of Clusters and Partial Sum for a Gaussian Triangular Array

Lu Yingyin1,Zhang Wenjing1,Guo Jinhui2,*()   

  1. 1School of Science, Southwest Petroleum University, Chengdu 610500
    2School of Statistics, Southwestern University of Finance and Economics, Chengdu 611130
  • Received:2023-09-05 Revised:2024-03-01 Online:2024-10-26 Published:2024-10-16
  • Supported by:
    Natural Science Foundation of Sichuan(2022NSFSC1838)

摘要:

具有单位方差的中心化平稳高斯三角阵$ \{X_{i,n},1\leq i\leq n\}$, 在其相关系数 $ \rho_{j,n}=E\left( X_{i,n}X_{i+j,n}\right)$ 满足文献 [14] 的条件下, 本文证明了该高斯三角阵的聚集点过程依分布收敛于泊松过程, 并且聚集点过程与该高斯三角阵的部分和渐近独立.

关键词: 高斯三角阵, 聚集点过程, 部分和, 渐近行为

Abstract:

Let $\{X_{i,n},1\leq i\leq n\}$ be a centered stationary Gaussian triangular array with unit variance. Assuming the correlation $ \rho_{j,n}=E\left( X_{i,n}X_{i+j,n}\right)$ satisfies the conditions in [14], this paper is interested in the joint behavior of the point process of clusters and the partial sum of the Gaussian triangular array. It is shown that the point process of clusters converges in distribution to a Poisson process and is asymptotically independent with the partial sums.

Key words: Stationary gaussian triangular array, Point process of clusters, Partial sum, Joint behavior

中图分类号: 

  • O211.4