数学物理学报 ›› 2024, Vol. 44 ›› Issue (5): 1319-1334.
收稿日期:
2022-11-07
修回日期:
2024-03-26
出版日期:
2024-10-26
发布日期:
2024-10-16
作者简介:
王俊杰, E-mail: 基金资助:
Received:
2022-11-07
Revised:
2024-03-26
Online:
2024-10-26
Published:
2024-10-16
Supported by:
摘要:
该文研究分数阶 KGS 方程组的辛差分格式. 首先, 作者给出了无穷维分数阶 Hamilton 系统, 并将 KGS 方程组转化为 Hamilton 系统. 然后, 基于分数阶中心差分格式对分数阶 KGS 方程组进行空间离散, 得到的半离散系统是一个有限维 Hamilton 系统. 接着, 利用辛中点格式对时间进行离散得到全离散格式, 并且对该格式进行了守恒性分析. 最后, 通过数值实验验证了该数值格式的有效性.
中图分类号:
王俊杰. 空间分数阶 KGS 方程组的辛差分格式[J]. 数学物理学报, 2024, 44(5): 1319-1334.
Wang Junjie. Symplectic Difference Scheme for the Space Fractional KGS Equations[J]. Acta mathematica scientia,Series A, 2024, 44(5): 1319-1334.
[1] | Feng K, Qin M. Symplectic Geometric Algorithms for Hamiltonian Systems. Berlin: Springer, 2009 |
[2] |
Channel P, Scovel C. Symplectic integration of Hamiltonian systems. Nonlinearity, 1990, 3: 231-259
doi: 10.1088/0951-7715/3/2/001 |
[3] | Liu X, Qi Y, He J, Ding P. Recent progress in symplectic algorithms for use in quantum systems. Communications in Computational Physcis, 2007, 2(1): 1-53 |
[4] | Mclachlan R. Symplectic integration of Hamiltonian wave equations. Numerische Mathematik, 1994, 66: 465-492 |
[5] | Sanz-Serna J, Calvo M. Numerical Hamiltonian Problems. London: Chapman and Hall, 1994 |
[6] | Hairer E, Lubich C, Wanner G. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary DifferentialEquations. Berlin: Springer-Verlag, 2002 |
[7] | Bridges T, Reich S. Numerical methods for Hamiltonian PDEs. Journal of Physics A Mathematical and General, 2006, 39: 5287-5320 |
[8] | Gong Y, Cai J, Wang Y. Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs. Journal of Computational Physics, 2014, 279: 80-102 |
[9] | Bridges T. Multi-symplectic structures and wave propagation. Mathematical Proceedings of the Cambridge Philosophical Society, 1997, 121: 147-190 |
[10] | Chen Y, Sun Y, Tang Y. Energy-preserving numerical methods for Landau-Lifshitz equation. Journal of Physics A Mathematical and Theoretical, 2011, 44(29): 295207 |
[11] | Kong L, Hong J, Zang J. Splitting multi-symplectic integrators for Maxwell's equation. Journal of Computational Physics, 2010, 229: 4259-4278 |
[12] | Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations. Journal of Computational Physics, 2000, 157: 473-499 |
[13] | Ober-Blöbaum S. Galerkin variational integrators and modified symplectic Runge-Kutta methods. IMA Journal of Numerical Analysis, 2017, 37: 375-406 |
[14] | Mei L, Wu X. Symplectic exponential Runge-Kutta methods for solving nonlinear Hamiltonian systems. Journal of Computational Physics, 2017, 338: 567-584 |
[15] | Wang P, Hong J, Xu D. Construction of symplectic Runge-Kutta methods for stochastic Hamiltonian systems. Computer Physics Communications, 2017, 21(1): 237-270 |
[16] | Guo B, Pu X, Huang F. Fractional Partial Differential Equations and Their Numerical Solutions. Beijing: World Scientific Publishing, 2011 |
[17] | Li C P, Zeng F H. Numerical Methods for Fractional Calculus. New York: CRC Press, 2015 |
[18] | 孙志高, 高广花. 分数阶偏微分方程的有限差分方法. 北京: 科学出版社, 2015 |
Sun Z G, Gao G H. Finite Difference Methods for Fractional-order Differential Equations. Beijing: Science Press, 2015 | |
[19] | 刘发旺, 庄平辉, 刘青霞. 分数阶偏微分方程数值方法及其应用. 北京: 科学出版社, 2015 |
Liu F W, Zhuang P H, Liu Q X. Numerical Methods and Their Applications of Fractional Partial Differential Equations. Beijing: Science Press, 2015 | |
[20] | Wang P, Huang C, Zhao L. Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation. Journal of Computational and Applied Mathematics, 2016, 306: 231-247 |
[21] | Wang D, Xiao A, Yang W. Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative. Journal of Computational Physics, 2013, 242: 670-681 |
[22] | Zhao X, Sun Z, Hao Z. A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM Journal on Scientific Computing, 2014, 36(6): A2865-A2886 |
[23] | Bueno-Orovio A, Kay D, Burrage K. Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numerical Mathematics, 2014, 54(4): 937-954 |
[24] | Pindza E, Owolabi K. Fourier spectral method for higher order space fractional reaction-diffusion equations. Commun Nonlinear Sci Numer Simulat, 2016, 40: 112-128 |
[25] | Wang J. High-order conservative schemes for the space fractional nonlinear Schrödinger equation. Applied Numerical Mathematics, 2021, 165: 248-269 |
[26] | Gao G, Sun Z. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. Journal of Computional Physics, 2014, 259: 33-50 |
[27] | Alikhanov A. A new difference for the time fractional diffusion equation. J Comput Phys, 2015, 280: 424-438 |
[28] | Jiang S, Zhang J, Zhang Q, Zhang Z. Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Communications in Computational Physics, 2017, 21(3): 650-678 |
[29] | Stynes M, O'Riordan E, Gracia J L. Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM Journal on Numerical Analysis, 2017, 55: 1057-1079 |
[30] | Jin B, Lazarov R, Pasciak J, Zhou Z. Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA Journal of Numerical Analysis, 2015, 35(2): 561-582 |
[31] | Jin B, Lazarov R, Zhou Z. Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM Journal on Scientific Computing, 2016, 38(1): A146-A170 |
[32] | Yang Y, Chen Y, Huang Y, Wei H. Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis. Computational & Applied Mathematics, 2017, 73: 1218-1232 |
[33] | Xiao A, Wang J. Symplectic scheme for the Schrödinger equation with fractional Laplacian. Applied Numerical Mathematics, 2019, 146: 469-487 |
[34] | Wang J. Symplectic-preserving Fourier spectral scheme for space fractional Klein-Gordon-Schrödinger equations. Numerical Methods for Partial Differential Equations, 2021, 37: 1030-1056 |
[35] | Wang P, Huang C. Structure-preserving numerical methods for the fractional Schrödinger equation. Applied Numerical Mathematics, 2018, 129: 137-158 |
[36] | Celik C. Duman M. Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. Journal of Computational Physics, 2012, 231: 1743-1750 |
[1] | 马小军, 陈富, 贾芝福. 基于非 Lipschitz 步长策略的临近分裂可行问题的强收敛性研究[J]. 数学物理学报, 2024, 44(4): 1052-1065. |
[2] | 简金宝, 代钰, 尹江华. 分裂可行性问题的一个惯性共轭梯度投影法[J]. 数学物理学报, 2024, 44(4): 1066-1079. |
[3] | 聂佳琳, 龙宪军. 求解非光滑鞍点问题的黄金比率原始对偶算法[J]. 数学物理学报, 2024, 44(4): 1080-1091. |
[4] | 张潇, 张宏武. 分数阶椭圆方程反边值问题的分数 Tikhonov 正则化方法[J]. 数学物理学报, 2024, 44(4): 978-993. |
[5] | 蔡宇, 周光辉. 一种 WYL 型谱共轭梯度法的全局收敛性[J]. 数学物理学报, 2024, 44(1): 173-184. |
[6] | 简金宝,林惠,马国栋. 大规模非凸不可分优化问题的分裂序列二次规划算法[J]. 数学物理学报, 2023, 43(4): 1284-1296. |
[7] | 于一康,牛晶. 一类椭圆型界面问题的数值算法[J]. 数学物理学报, 2023, 43(3): 883-895. |
[8] | 刘鹏杰, 吴彦强, 邵枫, 张艳, 邵虎. 两个带重启方向的改进 HS 型共轭梯度法[J]. 数学物理学报, 2023, 43(2): 570-580. |
[9] | 谢亚君,马昌凤. 源于自由边值离散的弱非线性互补问题的m+1阶收敛性算法[J]. 数学物理学报, 2022, 42(5): 1506-1516. |
[10] | 许文丁,钟婷. 非光滑牛顿算法的收敛性[J]. 数学物理学报, 2022, 42(5): 1537-1550. |
[11] | 黄媛,支越,康彤,王然,张红. 非线性感应加热问题的全离散有限元方法[J]. 数学物理学报, 2022, 42(4): 1238-1255. |
[12] | 潘庭葳,贺素香. 双重稀疏约束优化问题的一种贪婪单纯形算法[J]. 数学物理学报, 2022, 42(3): 920-933. |
[13] | 马昌凤,马飞洋. H-矩阵非线性互补问题基于模的矩阵分裂迭代法改进的收敛性定理[J]. 数学物理学报, 2022, 42(2): 583-593. |
[14] | 袁功林,吴宇伦,PhamHongtruong. 基于非单调线搜索的HS-DY形共轭梯度方法及在图像恢复中的应用[J]. 数学物理学报, 2022, 42(2): 605-620. |
[15] | 张宏武. 一类半线性椭圆方程柯西问题的正则化方法[J]. 数学物理学报, 2022, 42(1): 45-57. |
|