[1] |
Borg G. Eine Umkehrung der Sturm-Liouvilleschen eigenwertaufgabe. Acta Math, 1946, 78(1): 1-96
|
[2] |
Freiling G, Yurko V A. Inverse Sturm-Liouville Problems and Their Applications. New York: NOVA Science Publishers, 2001
|
[3] |
Gesztesy F, Simon B. Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum. Trans Amer Math Soc, 2000, 352(6): 2765-2787
|
[4] |
Hochstadt H, Lieberman B. An inverse Sturm-Liouville problem with mixed given data. SIAM J Appl Math, 1978, 34: 676-680
|
[5] |
Horváth M. Inverse spectral problems and closed exponential systems. Ann Math, 2005, 162: 885-918
|
[6] |
Horváth M. On the inverse spectral theory of Schrödinger and Dirac operators. Trans Amer Math Soc, 2001, 353(10): 4155-4171
|
[7] |
Levitan B M. Inverse Sturm-Liouville Problems. Utrecht: VNU Science Press, 1987
|
[8] |
Marchenko V A. Sturm-Liouville Operators and Applications. Boston: Publisher Birkhüser, 1986
|
[9] |
Pöschel J, Trubowitz E. Inverse Spectral Theory. London: Academic Press, 1987
|
[10] |
Shieh C T, Buterin S A, Ignatiev M. On Hochstadt-Lieberman theorem for Sturm-Liouville operators. Far East J Appl Math, 2011, 52: 131-146
|
[11] |
王於平, 杨传富, 黄振友. Schrödinger 算子二次微分束的半逆问题. 数学物理学报, 2011, 31A(6): 1708-1717
|
|
Wang Y P, Yang C F, Huang Z Y. Half inverse problem for a quadratic pencil of Schrödinger operators. Acta Math Sci, 2011, 31A(6): 1708-1717
|
[12] |
Krueger R J. Inverse problems for nonabsorbing media with discontinuous material properties. J Math Phys, 1982, 23: 396-404
|
[13] |
Anderssen R S. The effect of discontinuities in density and shear velocity on the asymptotic overtone structure of tortional eigenfrequencies of the Earth. Geophys J R Astron Soc, 1997, 50: 303-309
|
[14] |
Litvinenko O N, Soshnikov V I. The Theory of Heterogenious Lines and Their Applications in Radio Engineering (in Russian). Moscow: Radio, 1964
|
[15] |
Hald O. Discontinuous inverse eigenvalue problem. Commun Pure Appl Math, 1984, 37(5): 539-577
|
[16] |
Ozkan A S, Keskin B. Uniqueness theorems for an impulsive Sturm-Liouville boundary value problem. Appl Math J Chin Univ, 2012, 27(4): 428-434
|
[17] |
Shieh C T, Yurko V A. Inverse nodal and inverse spectral problems for discontinuous boundary value problems. J Math Anal Appl, 2008, 347: 266-272
|
[18] |
Wang Y P. Inverse problems for discontinuous Sturm-Liouville operators with mixed spectral data. Inverse Probl Sci Eng, 2015, 23(7): 1180-1198
|
[19] |
Yang C F. Inverse problems for the Sturm-Liouville operator with discontinuity. Inverse Probl Sci Eng, 2014, 22(2): 232-244
|
[20] |
Yang C F, Bondarenko N P. Reconstruction and solvability for discontinuous Hochstadt-Lieberman problems. J Spectral Theory, 2020, 10: 1445-1469
|
[21] |
Yang C F, Bondarenko N P. Local solvability and stability of inverse problems for Sturm-Liouville operators with a discontinuity. J Differential Equations, 2020, 268: 6173-6188
|
[22] |
Xu X C, Yang C F. Inverse spectral problems for the Sturm-Liouville operator with discontinuity. J Differential Equations, 2017, 262: 3093-3106
|
[23] |
Yang C F. Traces of Sturm-Liouville operators with discontinuities. Inverse Probl Sci Eng, 2014, 22: 803-813
|
[24] |
Yurko V A. Integral transforms connected with discontinuous boundary value problems. Integral Transforms Spec Funct, 2000, 10: 141-164
|
[25] |
Yang C F, Bondarenko N P, Xu X C. An inverse problem for the Sturm-Liouville pencil with arbitrary entire functions in the boundary condition. Inverse Problems and Imaging, 2020, 14: 153-169
|
[26] |
Guo Y, Ma L J, Xu X C, et al. Weak and strong stability of the inverse Sturm-Liouville problem. Math Meth Appl Sci, 2023, 46(14): 15684-15705
|
[27] |
Bondarenko N P. A partial inverse problem for the Sturm-Liouville operator on a star-shaped graph. Anal Math Phys, 2018, 8: 155-168
|
[28] |
Levin B Y. Lectures on Entire Functions. Providence RI: Amer Math Soc, 1996
|