数学物理学报 ›› 2024, Vol. 44 ›› Issue (4): 871-884.

• • 上一篇    下一篇

Kirchhoff 型方程正规化解的多重性及渐近行为

靳振峰1,2,孙红蕊2,*(),张为民3   

  1. 1山西师范大学数学与计算机科学学院 太原 030031
    2兰州大学数学与统计学院 兰州 730000
    3华东师范大学数学科学学院, 数学与工程应用教育部重点实验室 &上海市核心数学与实践重点实验室 上海 200241
  • 收稿日期:2023-07-24 修回日期:2024-04-29 出版日期:2024-08-26 发布日期:2024-07-26
  • 通讯作者: *孙红蕊, E-mail:hrsun@lzu.edu.cn
  • 基金资助:
    山西省基础研究计划项目(202303021212160);国家自然科学基金(11671181);甘肃省科技计划项目 (基础研究创新群体)(21JR7RA535)

Multiplicity and Asymptotic Behavior of Normalized Solutions for Kirchhoff-Type Equation

Jin Zhenfeng1,2,Sun Hongrui2,*(),Zhang Weimin3   

  1. 1School of Mathematics and Computer Science, Shanxi Normal University, Taiyuan 030031
    2School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000
    3School of Mathematical Sciences, Key Laboratory of Mathematics and Engineering Applications (Ministry of Education) & Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241
  • Received:2023-07-24 Revised:2024-04-29 Online:2024-08-26 Published:2024-07-26
  • Supported by:
    NSF of Shanxi Province(202303021212160);NSFC(11671181);Science Technology Program of Gansu Province(21JR7RA535)

摘要:

该文研究了如下 Kirchhoff 型方程

$\begin{cases} -\left(a+b\int_{\mathbb{R}^{3}}|\nabla u|^{2}dx\right)\Delta u=\lambda u+|u|^{p-2}u, \quad x\in \mathbb{R}^{3},\\ \|u\|^2_{2}=\rho,\end{cases}$

其中 $a$, $b$, $\rho>0$, $\lambda\in\mathbb{R}$ 是与质量约束 $\|u\|^2_{2}=\rho$ 有关的 Lagrange 乘子. 当 $p\in\left(2,\frac{10}{3}\right)$ 或者 $p\in\left(\frac{14}{3},6\right)$ 时, 利用亏格理论证明了上述方程 $L^2$-正规化解的多重性. 此外, 该文证明了上述解关于参数 $b\rightarrow 0^+$ 时的渐近行为.

关键词: Kirchhoff 方程, 变分法, 正规化解, 渐近行为

Abstract:

In this paper, we consider the following Kirchhoff-type equation

$\begin{cases} -\left(a+b\int_{\mathbb{R}^{3}}|\nabla u|^{2}\ d x\right)\Delta u=\lambda u+|u|^{p-2}u \quad \mathrm{in}\ \mathbb{R}^{3},\\ \|u\|^2_{2}=\rho,\end{cases}$

where $a$, $b$, $\rho>0$ and $\lambda\in\mathbb{R}$ arises as Lagrange multiplier with respect to the mass constraint $\|u\|^2_{2}=\rho$. When $p\in\left(2,\frac{10}{3}\right)$ or $p\in\left(\frac{14}{3},6\right)$, we establish the existence of infinitely many radial $L^2$-normalized solutions by using the genus theory. Furthermore, we testify an asymptotic behavior of the above solutions with respect to the parameter $b\rightarrow 0^+$.

Key words: Kirchhoff equation, Variational method, Normalized solution, Asymptotic behavior

中图分类号: 

  • O175