[1] |
Singh A, Singh N. Laser guiding through an axially nonuniform collisionless plasma channel. J Fusion Energ, 2012, 31(6): 538-543
doi: 10.1007/s10894-011-9498-9
|
[2] |
Gill T S. Optical guiding of laser beam in nonuniform plasma. Pramana, 2012, 55(5): 835-842
doi: 10.1007/s12043-000-0051-z
|
[3] |
Linares F, Ponce G. Introduction to Nonlinear Dispersive Equations. New York: Springer-Verlag, 2015
|
[4] |
Guzmán C M. On well posedness for the inhomogeneous nonlinear Schrödinger equation. Nonlinear Analysis: Real World Applications, 2017, 37: 249-286
|
[5] |
Cho Y, Lee M. On the Orbital stability of inhomogeneous nonlinear Schrödinger equation with singular potential. Bull Korean Math Soc, 2019, 56(6): 1601-1615
|
[6] |
Bonheure D, Schaftingen J V. Bound state solutions for a class of nonlinear Schrödinger equations. Rev Mat Iberoamericana, 2008, 24(1): 297-351
doi: 10.4171/rmi
|
[7] |
Ding W Y, Ni W M. On the existence of positive entire solutions of a semilinear elliptic equation. Arch Rational Mech Anal, 1986, 91: 283-308
|
[8] |
Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case II. Annales de l'Institut Henri Poincaré C, Analyse Nonlinéaire, 1984, 1(4): 223-283
|
[9] |
Cazenave T, Lions P L. Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm Math Phys, 1982, 85: 549-561
|
[10] |
Bellazzini J, Visciglia N. On the orbital stability for a class of nonautonomous NLS. Indiana University Mathematics Journal, 2010, 59(3): 1211-1230
|
[11] |
Fukuizumi R, Ohta M. Instability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities. J Math Kyoto Univ, 2005, 45(1): 145-158
|
[12] |
Genoud F, Stuart C A. Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves. Discrete Contin Dyn Syst, 2008, 21(1): 137-186
doi: 10.3934/dcds.2008.21.137
|
[13] |
Chen J Q. On a class of nonlinear inhomogeneous Schrödinger equation. J Appl Math Comput, 2010, 32: 237-253
|
[14] |
Farah L G. Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation. J Evol Equ, 2016, 16: 193-208
|