数学物理学报 ›› 2024, Vol. 44 ›› Issue (2): 484-499.

• • 上一篇    下一篇

物理信息神经网络求解五阶 emKdV 方程的正反问题

吴泽康,王晓丽*(),韩文静,李金红   

  1. 齐鲁工业大学 (山东省科学院) 数学与统计学院 济南 250353
  • 收稿日期:2023-05-08 修回日期:2023-10-17 出版日期:2024-04-26 发布日期:2024-04-07
  • 通讯作者: * 王晓丽, Email:wxlspu@qlu.edu.cn
  • 基金资助:
    国家自然科学基金(12275017);山东省自然科学基金(ZR2020MA049)

Solving the Forward and Inverse Problems of Extended Fifth-Order mKdV Equation Via Physics-Informed Neural Networks

Wu Zekang,Wang Xiaoli*(),Han Wenjing,Li Jinhong   

  1. School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Science), Jinan 250353
  • Received:2023-05-08 Revised:2023-10-17 Online:2024-04-26 Published:2024-04-07
  • Supported by:
    NSFC(12275017);Natural Science Foundation of Shandong Province(ZR2020MA049)

摘要:

该文利用物理信息神经网络 (PINNs) 对扩展的五阶 mKdV (emKdV) 方程的正反问题进行求解, 并对孤子的动力学行为进行分析、模拟. 针对正问题, 选用双曲正切函数 $\tanh$ 作为激活函数求解方程的一、二、三孤子解, 并将 PINNs 方法求得的数据驱动解与借助简化的 Hirota 方法给出的方程精确解进行比较, 一孤子解的精度为 $\mathcal{O}(10^{-4})$, 二、三孤子解的精度为 $\mathcal{O}(10^{-3})$. 针对反问题, 分别由一、二、三孤子解的数据进行驱动求解方程的两个待定系数, 并在不同的噪声下探究算法的鲁棒性. 当在训练数据中加入 1% 的初始噪声或观测噪声时, 待求系数的预测精度可分别达到 $\mathcal{O}(10^{-3})$ 和 $\mathcal{O}(10^{-2})$; 当加入 3% 的初始噪声或观测噪声时, 预测精度依然可以达到 $\mathcal{O}(10^{-2})$; 由实验数据分析可知观测噪声对 PINNs 模型的影响要略大于初始噪声.

关键词: 物理信息神经网络, 五阶 emKdV 方程, 数据驱动解, 非线性动力学

Abstract:

With the help of the physics-informed neural networks (PINNs), the forward and inverse problems of extended fifth-order mKdV(emKdV) equation are tackled, and the dynamic behaviors of solitons are also analyzed and simulated in this paper. The hyperbolic tangent function $\tanh$ is selected as the activation function to solve the one, two and three-soliton solutions of the equation. Moreover, the data-driven solutions obtained by PINNs method are compared with the exact solution given by the simplified Hirota method. Specifically, the accuracy of one-soliton solution is $\mathcal{O}(10^{-4})$, and the accuracy of the two-soliton and three-soliton solutions is $\mathcal{O}(10^{-3})$. For the inverse problem, the coefficients of the equation are discovered by the data of one, two and three-soliton solutions, respectively. Meanwhile, the robustness of the PINNs algorithm is explored under different noises. The accuracy of the data-driven coefficients can reach $\mathcal{O}(10^{-3})$ or $\mathcal{O}(10^{-2})$ respectively, when 1% initial noise or observation noise is added to the training data. And the prediction accuracy can still reach $\mathcal{O}(10^{-2})$ even if 3% initial noise or observation noise is added. According to the analysis of experimental data, the impact of observation noise on PINNs model is slightly greater than the initial noise.

Key words: Physics-informed neural networks, Fifth-order emKdV equations, Data-driven solutions, Nonlinear dynamics

中图分类号: 

  • O241.8