数学物理学报 ›› 2024, Vol. 44 ›› Issue (2): 465-475.

• • 上一篇    下一篇

一阶非线性时标动态方程的 Hyers-Ulam-Rassias 稳定性

邱仰聪1(),王其如2,*()   

  1. 1顺德职业技术学院人文学院 广东佛山 528333
    2中山大学数学学院 广州 510275
  • 收稿日期:2023-03-22 修回日期:2023-10-07 出版日期:2024-04-26 发布日期:2024-04-07
  • 通讯作者: * 王其如, Email:mcswqr@mail.sysu.edu.cn
  • 作者简介:邱仰聪,Email:q840410@qq.com
  • 基金资助:
    国家自然科学基金(12071491);广东高校科研项目(重点领域专项)(2021ZDZX4114)

Hyers-Ulam-Rassias Stability of First-Order Nonlinear Dynamic Equations on Time Scales

Qiu Yangcong1(),Wang Qiru2,*()   

  1. 1School of Humanities, Shunde Polytechnic, Guangdong Foshan 528333
    2School of Mathematics, Sun Yat-sen University, Guangzhou 510275
  • Received:2023-03-22 Revised:2023-10-07 Online:2024-04-26 Published:2024-04-07
  • Supported by:
    NSFC(12071491);Special Project in Key Fields of Colleges in Guangdong Province(2021ZDZX4114)

摘要:

利用 Picard 算子和动态不等式, 探讨了一类形式更普遍的一阶非线性时标动态方程的 Hyers-Ulam-Rassias 稳定性, 并且提供三个例子说明这些结论的应用.

关键词: 一阶非线性时标动态方程, Hyers-Ulam-Rassias 稳定性, Picard 算子

Abstract:

In this paper, by employing the Picard operator and dynamic inequalities, we investigate Hyers-Ulam-Rassias stability of a class of first-order nonlinear dynamic equations on time scales, which is more general than the equations discussed in the references. Three examples are presented to illustrate the applications of the conclusions.

Key words: First-order nonlinear dynamic equations on time scales, Hyers-Ulam-Rassias stability, Picard operator

中图分类号: 

  • O175.13