[1] |
Litrico X, Fromion V, Baume J P, et al. Experimental validation of a methodology to control irrigation canals based on Saint-Venant equations. Control Engineering Practice, 2005, 13(11): 1425-1437
doi: 10.1016/j.conengprac.2004.12.010
|
[2] |
Santos V D, Prieur C. Boundary control of open channels with numerical and experimental validations. IEEE Transactions on Control Systems Technology, 2008, 16(6): 1252-1264
doi: 10.1109/TCST.2008.919418
|
[3] |
Bastin G, Coron J M, d'Andrea-Novel B. On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Networks and Heterogeneous Media, 2009, 4(2): 177-187
doi: 10.3934/nhm.2009.4.177
|
[4] |
Halleux J D, Prieur C, Coron J M, et al. Boundary feedback control in networks of open channels. Automatica, 2003, 39(8): 1365-1376
doi: 10.1016/S0005-1098(03)00109-2
|
[5] |
Halleux J D, Bastin G, d'Andréa-Novel B, et al. A Lyapunov approach for the control of multi reach channels modelled by Saint-Venant equations. IFAC Nonlinear Control Systems, 2001, 34(6): 1429-1434
|
[6] |
Trinh N T, Andrieu V, Xu C Z. Boundary PI controllers for a star-shaped network of $2\times2$ systems governed by hyperbolic partial differential equations. International Federation of Automatic Control, 2017, 50(1): 7070-7075
|
[7] |
Trinh N T, Andrieu V, Xu C Z. Output regulation for a cascaded network of $2\times2$ hyperbolic systems with PI controller. Automatica, 2018, 91: 270-278
doi: 10.1016/j.automatica.2018.01.010
|
[8] |
Zhao D X, Fan D X, Guo Y P. The spectral analysis and exponential stability of a 1-d $2\times2$ hyperbolic system with proportional feedback control. International Journal of Control, Automation and Systems, 2022, 20(8): 2633-2640
|
[9] |
Hayat A, Shang P P. A quadratic Lyapunov function for Saint-Venant equations with arbitrary friction and space-varying slope. Automatica, 2019, 100: 52-60
doi: 10.1016/j.automatica.2018.10.035
|
[10] |
Bastin G, Coron J M. Stability and Boundary Stabilization of 1-D Hyperbolic Systems. Switzerland: Birkhäuser, 2016
|
[11] |
Tallman G, Smith O. Analog study of dead-beat posicast control. Ire Transactions on Automatic Control, 2003, 4(1): 14-21
doi: 10.1109/TAC.1958.1104844
|
[12] |
蔡国平, 陈龙祥. 时滞反馈控制的若干问题. 力学进展, 2013, 43(1): 21-28
|
|
Cai G P, Chen L X. Some problems of delayed feedback control. Advances in Mechanics, 2013, 43(1): 21-28
|
[13] |
Liu B, Hu H Y. Stabilization of linear undamped systems via position and delayed position feedbacks. Journal of Sound and Vibration, 2008, 312(3): 509-525
doi: 10.1016/j.jsv.2007.11.001
|
[14] |
Wang J M, Lv X W, Zhao D X. Exponential stability and spectral analysis of the pendulum system under position and delayed position feedbacks. International Journal of Control, 2011, 84(5): 904-915
doi: 10.1080/00207179.2011.582886
|
[15] |
Zhao D X, Wang J M. Exponential stability and spectral analysis of the inverted pendulum system under two delayed position feedbacks. Journal of Dynamical and Control Systems, 2012, 18(2): 269-295
doi: 10.1007/s10883-012-9143-6
|
[16] |
Atay F M. Balancing the inverted pendulum using position feedback. Applied Mathematics Letters, 1999, 12(5): 51-56
|
[17] |
Chentouf B, Smaoui N. Time-Delayed feedback control of a hydraulic model governed by a diffusive wave system. Complexity, 2020: Article ID 4986026
|
[18] |
范东霞, 赵东霞, 史娜, 等. 一类扩散波方程的PDP反馈控制和稳定性分析. 数学物理学报, 2021, 41A(4): 1088-1096
|
|
Fan D X, Zhao D X, Shi N, et al. The PDP feedback control and stability analysis of a diffusive wave equation. Acta Mathematica Scientia, 2021, 41A(4): 1088-1096
|
[19] |
庞玉婷, 赵东霞, 赵鑫, 等. 一类 $2\times2$ 双曲偏微分系统的 PDP 边界控制. 数学物理学报, 2023, 43A(5): 1471-1482
|
|
Pang Y T, Zhao D X, Zhao X, et al. The PDP boundary control for a class of $2\times2$ hyperbolic partial differential system. Acta Mathematica Scientia, 2023, 43A(5): 1471-1482
|