数学物理学报 ›› 2023, Vol. 43 ›› Issue (6): 1814-1830.

• • 上一篇    下一篇

三个数字集生成的 Moran 测度的谱性研究

熊婷()   

  1. 福建师范大学数学与统计学院 福州 350117
  • 收稿日期:2022-11-22 修回日期:2023-04-10 出版日期:2023-12-26 发布日期:2023-11-16
  • 作者简介:熊婷,E-mail: 602855710@qq.com
  • 基金资助:
    国家自然科学基金(11971190)

Spectrality of Moran Measures with Three-Element Didit Sets

Xiong Ting()   

  1. School of Mathematics and Statistics, Fujian Normal University, Fuzhou 350117
  • Received:2022-11-22 Revised:2023-04-10 Online:2023-12-26 Published:2023-11-16
  • Supported by:
    NSFC(11971190)

摘要:

假设对任意的 $n\geq1,$ 整数 $p_n>1$ 和 $D_n=\{0,a_n,b_n\}\subset\mathbb{Z},$ 其中 $ 0

$\mu:=\delta_{p_1^{-1}\{0,a_1,b_1\}} \ast \delta_{p_1^{-1}p_2^{-1}\{0,a_2,b_2\}} \ast \cdots \ast \delta_{p_1^{-1}p_2^{-1}\cdots p_n^{-1}\{0,a_n,b_n\}} \ast \cdots$

的谱性质, 得到当所有数字集一致有界时, $\mu$ 为谱测度当且仅当对任意 $n\geq1$, 序列 $\{\frac{p_1p_2\cdots p_n}{3{\rm gcd}(a_n,b_n)}\}_{n=1}^\infty$ 的 $3$ 因子个数各不相同且 $\{\frac{a_n}{{\rm gcd}(a_n,b_n)},\frac{b_n}{{\rm gcd}(a_n,b_n)}\}\equiv\{1,-1\}$ (mod 3).

关键词: 指数正交基, Moran 测度, 谱测度,

Abstract:

For $n\geq1$, let $p_n>1$ and $D_n=\{0,a_n,b_n\}\subset \mathbb{Z}$, where $0

$\mu:=\delta_{p_1^{-1}\{0,a_1,b_1\}} \ast \delta_{p_1^{-1}p_2^{-1}\{0,a_2,b_2\}} \ast \cdots \ast \delta_{p_1^{-1}p_2^{-1}\cdots p_n^{-1}\{0,a_n,b_n\}} \ast \cdots$

which is generated by the sequence of integers $\{p_n\}_{n=1}^\infty$ and the sequence of number sets $\{D_n\}_{n=1}^\infty$. The author shows that when all digit sets are uniformly bounded, $\mu$ is a spectral measure if and only if the numbers of factors 3 in the sequence $\{\frac{p_1p_2\cdots p_n}{3{\rm gcd}(a_n,b_n)}\}_{n=1}^\infty$ are different from each other and $\{\frac{a_n}{{\rm gcd}(a_n,b_n)},\frac{b_n}{{\rm gcd}(a_n,b_n)}\}\equiv\{1,-1\}$ (mod 3) for all $n\geq1$.

Key words: Exponential orthogonal basis, Moran measure, Spectral measure, Spectrum

中图分类号: 

  • O174.22