| [1] | An L X, Fu X Y, Lai C K. On spectral Cantor-Moran measures and a variant of Bourgain's sum of sine problem. Adv Math, 2019, 349: 84-124 | | [2] | An L X, He L, He X G. Spectrality and non-spectrality of the Riesz product measures with three elements in digit sets. J Funct Anal, 2019, 277(1): 255-278 | | [3] | An L X, He X G. A class of spectral Moran measures. J Funct Anal, 2014, 266(1): 343-354 | | [4] | An L X, He X G, Lau K S. Spectrality of a class of infinite convolutions. Adv Math, 2015, 283: 362-376 | | [5] | An L X, He X G, Li H X. Spectrality of infinite Bernoulli convolutions. J Funct Anal, 2015, 269(5): 1571-1590 | | [6] | Dai X R, He X G, Lai C K. Spectral property of Cantor measures with consecutive digits. Adv Math, 2013, 242: 187-208 | | [7] | Dai X R, He X G, lau K S. On spectral N-Bernoulli measures. Adv Math, 2014, 259: 511-531 | | [8] | Deng Q R. Spectrality of one dimensional self-similar measures with consecutive digits. J Math Anal Appl, 2014, 409(1): 331-346 | | [9] | Deng Q R, Li M T. Spectrality of Moran-type self-similar measures on R. J Math Anal Appl, 2022, 506(1): 125547 | | [10] | Deng Q R, Li M T. Spectrality of Moran-type Bernoulli convolutions. Bull Malays Math Sci Soc, 2023, 46: Article number 136 | | [11] | Ding D X. Spectral property of certain fractal measures. J Math Anal Appl, 2017, 451(2): 623-628 | | [12] | Dutkay D E, Haussermann J, Lai C K. Hadamard triples generate self-affine spectral measures. Tran Amer Math Soc, 2019, 371(2): 1439-1481 | | [13] | Dutkay D E, Jorgensen P E T. Fourier duality for fractal measures with affine scales. Math Comput, 2012, 81(280): 2253-2273 | | [14] | Fu Y S, Tang M W. An extension of Laba-Wang's theorem. J Math Anal Appl, 2020, 491(2): 124380. | | [15] | Fuglede B. Commuting self-adjoint partial differential operators and a group theoretic problem. J Funct Anal, 1974, 16(1): 101-121 | | [16] | He L, He X G. On the Fourier orthonormal bases of Cantor-Moran measures. J Funct Anal, 2017, 272(5): 1980-2004 | | [17] | Hu T Y, Lau K S. Spectral property of the Bernoulli convolutions. Adv Math, 2008, 219(2): 554-567 | | [18] | Jorgensen P E T, Pedersen S. Dense analytic subspaces in fractall L2-spaces. J Anal Math, 1998, 75(1): 185-228 | | [19] | Kolountzakis M N, Matolcsi M. Tiles with no spectra. Walter de Gruyter, 2006, 18(3): 519-528 | | [20] | Laba I, Wang Y. On spectral Cantor measures. J Funct Anal, 2002, 193(2): 409-420 | | [21] | Li J L. Spectra of a class of self-affine measures. J Funct Anal, 2011, 260(4): 1086-1095 | | [22] | Shi R. Spectrality of a class of Cantor-Moran measures. J Funct Anal, 2019, 276(12): 3767-3794 | | [23] | Strichartz R S. Mock Fourier series and transforms associated with certain Cantor measures. J Anal Math, 2000, 81(1): 209-238 | | [24] | Strichartz R S. Convergence of Mock Fourier series. J Anal Math, 2006, 99: 333-353 | | [25] | Wang Z Y, Dong X H, Liu Z S. Spectrality of certain Moran measures with three-element digit sets. J Math Anal Appl, 2018, 459(2): 743-752 |
|