数学物理学报 ›› 2023, Vol. 43 ›› Issue (6): 1814-1830.
收稿日期:
2022-11-22
修回日期:
2023-04-10
出版日期:
2023-12-26
发布日期:
2023-11-16
作者简介:
熊婷,E-mail: 基金资助:
Received:
2022-11-22
Revised:
2023-04-10
Online:
2023-12-26
Published:
2023-11-16
Supported by:
摘要:
假设对任意的
的谱性质, 得到当所有数字集一致有界时,
中图分类号:
熊婷. 三个数字集生成的 Moran 测度的谱性研究[J]. 数学物理学报, 2023, 43(6): 1814-1830.
Xiong Ting. Spectrality of Moran Measures with Three-Element Didit Sets[J]. Acta mathematica scientia,Series A, 2023, 43(6): 1814-1830.
[1] |
An L X, Fu X Y, Lai C K. On spectral Cantor-Moran measures and a variant of Bourgain's sum of sine problem. Adv Math, 2019, 349: 84-124
doi: 10.1016/j.aim.2019.04.014 |
[2] |
An L X, He L, He X G. Spectrality and non-spectrality of the Riesz product measures with three elements in digit sets. J Funct Anal, 2019, 277(1): 255-278
doi: 10.1016/j.jfa.2018.10.017 |
[3] |
An L X, He X G. A class of spectral Moran measures. J Funct Anal, 2014, 266(1): 343-354
doi: 10.1016/j.jfa.2013.08.031 |
[4] |
An L X, He X G, Lau K S. Spectrality of a class of infinite convolutions. Adv Math, 2015, 283: 362-376
doi: 10.1016/j.aim.2015.07.021 |
[5] |
An L X, He X G, Li H X. Spectrality of infinite Bernoulli convolutions. J Funct Anal, 2015, 269(5): 1571-1590
doi: 10.1016/j.jfa.2015.05.008 |
[6] |
Dai X R, He X G, Lai C K. Spectral property of Cantor measures with consecutive digits. Adv Math, 2013, 242: 187-208
doi: 10.1016/j.aim.2013.04.016 |
[7] |
Dai X R, He X G, lau K S. On spectral N-Bernoulli measures. Adv Math, 2014, 259: 511-531
doi: 10.1016/j.aim.2014.03.026 |
[8] |
Deng Q R. Spectrality of one dimensional self-similar measures with consecutive digits. J Math Anal Appl, 2014, 409(1): 331-346
doi: 10.1016/j.jmaa.2013.07.046 |
[9] |
Deng Q R, Li M T. Spectrality of Moran-type self-similar measures on R. J Math Anal Appl, 2022, 506(1): 125547
doi: 10.1016/j.jmaa.2021.125547 |
[10] | Deng Q R, Li M T. Spectrality of Moran-type Bernoulli convolutions. Bull Malays Math Sci Soc, 2023, 46: Article number 136 |
[11] |
Ding D X. Spectral property of certain fractal measures. J Math Anal Appl, 2017, 451(2): 623-628
doi: 10.1016/j.jmaa.2017.02.040 |
[12] |
Dutkay D E, Haussermann J, Lai C K. Hadamard triples generate self-affine spectral measures. Tran Amer Math Soc, 2019, 371(2): 1439-1481
doi: 10.1090/tran/2019-371-02 |
[13] |
Dutkay D E, Jorgensen P E T. Fourier duality for fractal measures with affine scales. Math Comput, 2012, 81(280): 2253-2273
doi: 10.1090/mcom/2012-81-280 |
[14] |
Fu Y S, Tang M W. An extension of Laba-Wang's theorem. J Math Anal Appl, 2020, 491(2): 124380.
doi: 10.1016/j.jmaa.2020.124380 |
[15] |
Fuglede B. Commuting self-adjoint partial differential operators and a group theoretic problem. J Funct Anal, 1974, 16(1): 101-121
doi: 10.1016/0022-1236(74)90072-X |
[16] |
He L, He X G. On the Fourier orthonormal bases of Cantor-Moran measures. J Funct Anal, 2017, 272(5): 1980-2004
doi: 10.1016/j.jfa.2016.09.021 |
[17] |
Hu T Y, Lau K S. Spectral property of the Bernoulli convolutions. Adv Math, 2008, 219(2): 554-567
doi: 10.1016/j.aim.2008.05.004 |
[18] |
Jorgensen P E T, Pedersen S. Dense analytic subspaces in fractall ![]() ![]() doi: 10.1007/BF02788699 |
[19] | Kolountzakis M N, Matolcsi M. Tiles with no spectra. Walter de Gruyter, 2006, 18(3): 519-528 |
[20] |
Laba I, Wang Y. On spectral Cantor measures. J Funct Anal, 2002, 193(2): 409-420
doi: 10.1006/jfan.2001.3941 |
[21] |
Li J L. Spectra of a class of self-affine measures. J Funct Anal, 2011, 260(4): 1086-1095
doi: 10.1016/j.jfa.2010.12.001 |
[22] |
Shi R. Spectrality of a class of Cantor-Moran measures. J Funct Anal, 2019, 276(12): 3767-3794
doi: 10.1016/j.jfa.2018.10.005 |
[23] |
Strichartz R S. Mock Fourier series and transforms associated with certain Cantor measures. J Anal Math, 2000, 81(1): 209-238
doi: 10.1007/BF02788990 |
[24] |
Strichartz R S. Convergence of Mock Fourier series. J Anal Math, 2006, 99: 333-353
doi: 10.1007/BF02789451 |
[25] |
Wang Z Y, Dong X H, Liu Z S. Spectrality of certain Moran measures with three-element digit sets. J Math Anal Appl, 2018, 459(2): 743-752
doi: 10.1016/j.jmaa.2017.11.006 |
[1] | 韩忠杰, 贺以恒, 赵志学. 具有不同类型阻尼弱耦合板方程的间接镇定和最优衰减率[J]. 数学物理学报, 2023, 43(6): 1681-1698. |
[2] | 简伟刚, 龙薇. 渐近周期函数的 Tauberian 定理及其在抽象 Cauchy 问题中的应用[J]. 数学物理学报, 2023, 43(6): 1699-1709. |
[3] | 钱志祥. 一类高阶自伴向量微分算子谱的离散性及其应用[J]. 数学物理学报, 2023, 43(4): 1009-1023. |
[4] | 牛翠霞,马和平. 非线性非一致介质二维Maxwell方程leap-frog Crank-Nicolson多区域Legendre-tau配置谱方法[J]. 数学物理学报, 2023, 43(3): 808-828. |
[5] | 丁宣浩, 黄雨浩, 李永宁. 调和Hardy空间上的Toeplitz算子的酉等价性[J]. 数学物理学报, 2023, 43(1): 27-34. |
[6] | 杨登允, 张金国, 陶永芊. Willmore超曲面与极值超曲面的谱特征[J]. 数学物理学报, 2023, 43(1): 35-42. |
[7] | 刘甲玉,魏含玉,张燕,夏铁成,王惠. 阿尔法螺旋蛋白中三分量四阶非线性Schrödinger系统孤子解及其非线性动力行为研究[J]. 数学物理学报, 2022, 42(6): 1873-1885. |
[8] | 花蕊,齐雅茹. 一类反三角算子矩阵的本质谱[J]. 数学物理学报, 2022, 42(6): 1611-1618. |
[9] | 童雅阁,吴开谡. 非光滑边界条件下具时滞的Rotenberg方程主算子的谱分析[J]. 数学物理学报, 2022, 42(5): 1320-1331. |
[10] | 范楠,王才士,姬红. Bernoulli泛函上典则酉对合的扰动[J]. 数学物理学报, 2022, 42(4): 969-977. |
[11] | 李海雄,吴新林,丁道新. 三个数字集生成的自相似测度的乘积谱[J]. 数学物理学报, 2022, 42(3): 705-715. |
[12] | 江羡珍,廖伟,简金宝,毋晓迪. 一个带重启步的改进PRP型谱共轭梯度法[J]. 数学物理学报, 2022, 42(1): 216-227. |
[13] | 孙宝燕. 空间非均匀线性Boltzmann方程在硬势情形下解的最优指数收敛速率[J]. 数学物理学报, 2021, 41(6): 1853-1863. |
[14] | 林运国. 时间非齐次二态量子游荡的演化过程分析[J]. 数学物理学报, 2021, 41(4): 1097-1110. |
[15] | 曹庆,徐小川. 基于一类特殊特征值集的扩散算子逆谱问题[J]. 数学物理学报, 2021, 41(3): 577-582. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 79
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 49
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|