数学物理学报 ›› 2023, Vol. 43 ›› Issue (6): 1789-1802.
收稿日期:
2022-11-07
修回日期:
2023-03-02
出版日期:
2023-12-26
发布日期:
2023-11-16
通讯作者:
*刘国威,E-mail: 作者简介:
王启玲,E-mail: 基金资助:
Received:
2022-11-07
Revised:
2023-03-02
Online:
2023-12-26
Published:
2023-11-16
Supported by:
摘要:
该文研究了一类非自治的时滞不可压缩非牛顿流体在二维无界区域上的整体适定性. 在外力项具有最低正则性时, 该文结合空间区域分解技术和 Garlekin 方法建立了解的存在性, 然后利用能量估计的方法得到了解的唯一性和稳定性.
中图分类号:
刘国威, 王启玲. 一类时滞非牛顿流体在二维无界域上的适定性[J]. 数学物理学报, 2023, 43(6): 1789-1802.
Liu Guowei, Wang Qiling. The Well-posedness of a Delayed Non-Newtonian Fluid on 2D Unbounded Domains[J]. Acta mathematica scientia,Series A, 2023, 43(6): 1789-1802.
[1] | Bellout H, Bloom F. Bounds for the dimensions of the attractors of nonlinear bipolar viscous fluids. Asymptotic Anal, 1995, 11: 131-167 |
[2] |
Bellout H, Bloom F, Nečas J. Young measure-valued solutions for non-Newtonian incompressible viscous fluids. Comm PDE, 1994, 19: 1763-1803
doi: 10.1080/03605309408821073 |
[3] | Bellout H, Bloom F, Nečas J. Phenomenological behavior of multipolar viscous fluids. Quart Appl Math, 1992, 5: 559-583 |
[4] | Bellout H, Bloom F, Nečas J. Existence, uniqueness and stability of solutions to the initial boundary value problem for bipolar viscous fluids. Differential Integral Equations, 1995, 8: 453-464 |
[5] |
Bloom F, Hao W. Regularization of a non-Newtonian system in an unbounded channel: Existence and uniqueness of solutions. Nonlinear Anal: TMA, 2001, 44: 281-309
doi: 10.1016/S0362-546X(99)00264-3 |
[6] |
Bloom F, Hao W. Regularization of a non-Newtonian system in an unbounded channel: Existence of a maximal compact attractor. Nonlinear Anal: TMA, 2001, 43: 743-766
doi: 10.1016/S0362-546X(99)00232-1 |
[7] | Caraballo T, Real J. Navier-Stokes equations with delays. R Soc London Proc Ser A Math Phys Eng Sci, 2001, 457: 2441-2453 |
[8] |
Garrido-Atienza M J, Marín-Rubio P. Navier Stokes equations with delays on unbounded domains. Nonlinear Anal: TMA, 2006, 64: 1100-1118
doi: 10.1016/j.na.2005.05.057 |
[9] |
Jeong J, Park J. Pullback attractors for a 2D-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete Contin Dyn Syst B, 2016, 21: 2687-2702
doi: 10.3934/dcdsb |
[10] | Li Y, Zhao C. Global attractor for a system of the non-Newtonian incompressible fluid in 2D unbounded domains. Acta Anal Funct Appl, 2002, 4: 1009-1327 |
[11] | Lion P L. Quelques Méthodes De Résolution Des Problems Aux Limits Non Linéaires. Paris: Dunod, 1969 |
[12] |
Liu G. Pullback asymptotic behavior of solutions for a 2D non-autonomous non-Newtonian fluid. J Math Fluid Mech, 2017, 19: 623-643
doi: 10.1007/s00021-016-0299-9 |
[13] |
Liu L, Caraballo T, Fu X. Dynamics of a non-automous incompressible non-Newtonian fluid with dely. Dyn Partial Differ Equ, 2017, 14: 375-402
doi: 10.4310/DPDE.2017.v14.n4.a4 |
[14] | Liu L, Caraballo T, Fu X. Exponential stability of an incompressible non-Newtonian fluid with delay. Discrete Contin Dyn Syst B, 2018, 23: 4285-4303 |
[15] | Málek J, Nečas J, Rokyta M, Ružička M. Weak and Measure-Valued Solutions to Evolutionary PDE. New York: Champman-Hall, 1996 |
[16] | Nečas J, Silhavy M. Multipular viscous fluids. Quart Appl Math, 1991, XLIX(2): 247-265 |
[17] | Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Berlin: Springer, 1997 |
[18] | Zhao C. Pullback asymptotic behavior of solutions for a non-autonomous non-Newtonian fluid on 2D unbounded domains. J Math Phys, 2012, 53: 1-22 |
[19] |
Zhao C, Li Y. H2-compact attractor for a non-Newtonian system in two-dimensional unbound domains. Nonlinear Anal, 2004, 56: 1091-1103
doi: 10.1016/j.na.2003.11.006 |
[20] |
Zhao C, Li Y, Zhou S. Regularity of trajectory attractor and upper semicontinuity of global attractor for a 2D non-Newtonian fluid. J Differential Equations, 2009, 247: 2331-2363
doi: 10.1016/j.jde.2009.07.031 |
[21] |
Zhao C, Liu G, An R. Global well-posedness and pullback attractors for an incompressible non-Newtonian fluid with infinite delays. Differ Equ Dyn Syst, 2017, 25: 39-64
doi: 10.1007/s12591-014-0231-9 |
[22] |
Zhao C, Liu G, Wang W. Smooth pullback attractors for a non-autonomous 2D non-Newtonian fluid and their tempered behaviors. J Math Fluid Mech, 2014, 16: 243-262
doi: 10.1007/s00021-013-0153-2 |
[23] |
赵才地, 阳玲, 刘国威, 许正雄. 类时滞非牛顿流方程组在二维无界区域上的整体适定性与拉回吸引子. 应用数学学报, 2017, 40(2): 287-311
doi: 10.12387/C2017025 |
Zhao C, Yang L, Liu G, Hsu C. Global well-posenness and pullback attractor for a delayed non-Newtonian fluid on two dimensional unbounded domains. Acta Math Appl Sinica Chinese Ser, 2017, 40(2): 287-311
doi: 10.12387/C2017025 |
|
[24] |
Zhao C, Zhou S. Uniform attractors for a nonautonomous incompressible non-Newtonian fluid with locally uniformly integrable external forces in distribution space. J Math Phys, 2007, 48: 032702
doi: 10.1063/1.2709845 |
[25] |
Zhao C, Zhou S. Pullback attractors for a non-autonomous incompressible non-Newtonian fluid. J Differential Equations, 2007, 238: 394-425
doi: 10.1016/j.jde.2007.04.001 |
[26] |
Zhao C, Zhou S, Li Y. Existence and regularity of pullback attractors for an incompressible non-Newtonian fluid with delays. Quart Appl Math, 2009, 67: 503-540
doi: 10.1090/qam/2009-67-03 |
[1] | 马亚妮, 袁海龙. 一类具有时滞的 Gierer-Meinhardt 活化抑制模型的分支分析[J]. 数学物理学报, 2023, 43(6): 1774-1788. |
[2] | 蔡森林,周寿明,陈容. 大振幅浅水波模型的柯西问题研究[J]. 数学物理学报, 2023, 43(4): 1197-1120. |
[3] | 曾静,彭家玉. 一般经济均衡的本质稳定性及Hadamard适定性[J]. 数学物理学报, 2023, 43(3): 930-938. |
[4] | 康笑东, 范虹霞. 一类具有瞬时脉冲的二阶发展方程的近似可控性[J]. 数学物理学报, 2023, 43(2): 421-432. |
[5] | 付亲宏, 熊良林, 张海洋, 秦娅, 权沈爱. 具有半马尔可夫跳跃的时变时滞系统的滑模控制研究[J]. 数学物理学报, 2023, 43(2): 549-562. |
[6] | 林杰, 王天怡. 三维柱对称定常非齐次不可压 Euler 方程管道问题解的适定性及无穷远渐近速率[J]. 数学物理学报, 2023, 43(1): 219-237. |
[7] | 陈兴发, 钟澎洪. 一般幂次散焦导数薛定谔方程解在Hs中的不适定性[J]. 数学物理学报, 2022, 42(6): 1768-1781. |
[8] | 徐瑞,杨琰. 具有免疫时滞、饱和CTL免疫反应和免疫损害的HTLV-I感染模型的动力学性态[J]. 数学物理学报, 2022, 42(6): 1836-1848. |
[9] | 童雅阁,吴开谡. 非光滑边界条件下具时滞的Rotenberg方程主算子的谱分析[J]. 数学物理学报, 2022, 42(5): 1320-1331. |
[10] | 邓萌,徐瑞. 一类具有CTL免疫反应和免疫损害的HIV感染动力学模型的稳定性分析[J]. 数学物理学报, 2022, 42(5): 1592-1600. |
[11] | 肖翔宇,蒲志林. Cahn-Hilliard-Brinkman系统的全局吸引子[J]. 数学物理学报, 2022, 42(4): 1027-1040. |
[12] | 王凯,赵洪涌. 一类具有时滞的反应扩散登革热传染病模型的行波解[J]. 数学物理学报, 2022, 42(4): 1209-1226. |
[13] | 何泽荣,窦艺萌,韩梦杰. 具有尺度等级和时滞的种群系统的最优边界控制[J]. 数学物理学报, 2022, 42(3): 867-880. |
[14] | 张太雷,刘俊利,韩梦洁. 具有时滞和季节性的炭疽模型的动力学分析[J]. 数学物理学报, 2022, 42(3): 851-866. |
[15] | 程红梅,袁荣. 移动环境下带有非局部扩散项和时滞的反应扩散方程的强迫行波解[J]. 数学物理学报, 2022, 42(2): 491-501. |
|