数学物理学报 ›› 2023, Vol. 43 ›› Issue (3): 691-701.
收稿日期:
2022-09-27
修回日期:
2022-11-28
出版日期:
2023-06-26
发布日期:
2023-06-01
通讯作者:
徐鑫
E-mail:zouyonghuimath@163.com;xx@ouc.edu.cn
作者简介:
邹永辉, E-mail: 基金资助:
Received:
2022-09-27
Revised:
2022-11-28
Online:
2023-06-26
Published:
2023-06-01
Contact:
Xin Xu
E-mail:zouyonghuimath@163.com;xx@ouc.edu.cn
Supported by:
摘要:
该文研究了二维非稳态可压缩Prandtl边界层方程倒流点的存在性, 在Oleinik单调性假设下, 作者首先利用极值原理得到了第一个倒流点如果出现, 那么一定出现在边界
中图分类号:
邹永辉,徐鑫. 二维可压缩Prandtl方程倒流点的存在性[J]. 数学物理学报, 2023, 43(3): 691-701.
Zou Yonghui,Xu Xin. Existence of Back-Flow Point for the Two-Dimensional Compressible Prandtl Equation[J]. Acta mathematica scientia,Series A, 2023, 43(3): 691-701.
[1] |
Alexandre R, Wang Y, Xu C, et al. Well-posedness of the Prandtl equation in Sobolev spaces. J Amer Math Soc, 2015, 28(3): 745-784
doi: 10.1090/jams/2015-28-03 |
[2] |
Chen D, Wang Y, Zhang Z. Well-posedness of the Prandtl equation with monotonicity in Sobolev spaces. J Differential Equations, 2018, 264(9): 5870-5893
doi: 10.1016/j.jde.2018.01.024 |
[3] |
Dalibard A L, Masmoudi N. Separation for the stationary Prandtl equation. Publ Math Inst Hautes Etudes Sci, 2019, 130: 187-297
doi: 10.1007/s10240-019-00110-z |
[4] |
Ding M, Gong S. Global existence of weak solution to the compressible Prandtl equations. J Math Fluid Mech, 2017, 19(2): 239-254
doi: 10.1007/s00021-016-0274-5 |
[5] |
E W N. Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation. Acta Math Sin (Engl Ser), 2000, 16(2): 207-218
doi: 10.1007/s101140000034 |
[6] |
E W N, Engquist B. Blowup of solutions of the unsteady Prandtl's equation. Comm Pure Appl Math, 1997, 50: 1287-1293
doi: 10.1002/(ISSN)1097-0312 |
[7] |
Fan L, Ruan L, Yang A. Local well-posedness of solutions to the boundary layer equations for 2D compressible flow. J Math Anal Appl, 2021, 493(2): 124565
doi: 10.1016/j.jmaa.2020.124565 |
[8] | Gong S, Guo Y, Wang Y. Boundary layer problems for the two-dimensional compressible Navier-Stokes equations. Anal Appl (Singap), 2016, 14(1): 1-37 |
[9] |
Gong S, Wang X. On a global weak solution and back flow of the mixed Prandtl-Hartmann boundary layer problem. J Math Fluid Mech, 2021, 23(11): 1-16
doi: 10.1007/s00021-020-00542-2 |
[10] |
Gong S, Wang X, Wang Y. Stability and back flow of boundary layers for wind-driven oceanic current. Commun Math Sci, 2020, 18(3): 593-612
doi: 10.4310/CMS.2020.v18.n3.a1 |
[11] |
Kukavica I, Vicol V. On the local existence of analytic solutions to the Prandtl boundary layer equations. Commun Math Sci, 2013, 11(1): 269-292
doi: 10.4310/CMS.2013.v11.n1.a8 |
[12] |
Kukavica I, Vicol V, Wang F. The van Dommelen and Shen singularity in the Prandtl equations. Adv Math, 2017, 307: 288-311
doi: 10.1016/j.aim.2016.11.013 |
[13] |
Li W, Masmoudi N, Yang T. Well-Posedness in Gevrey Function Space for 3D Prandtl Equations without structural assumption. Comm Pure Appl Math, 2022, 75(8): 1755-1797
doi: 10.1002/cpa.v75.8 |
[14] |
Liu C, Wang Y, Yang T. On the ill-posedness of the Prandtl equations in three space dimensions. Arch Rational Mech Anal, 2016, 220: 83-108
doi: 10.1007/s00205-015-0927-1 |
[15] |
Liu C, Wang Y, Yang T. A well-posedness theory for the Prandtl equations in three space variables. Adv Math, 2017, 308: 1074-1126
doi: 10.1016/j.aim.2016.12.025 |
[16] |
Liu C, Xie F, Yang T. MHD boundary Layers theory in Sobolev spaces without monotonicity I: Well-Posedness theory. Comm Pure Appl Math, 2019, 72(1): 63-121
doi: 10.1002/cpa.v72.1 |
[17] |
Masmoudi N, Wong T K. Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Comm Pure Appl Math, 2015, 68(10): 1683-1741
doi: 10.1002/cpa.v68.10 |
[18] | Moore F K. Three-dimensional boundary layer theory. Adv Appl Mech, 1956, 4: 159-228 |
[19] | Oleinik O A. On the system of Prandtl equations in boundary-layer theory. Dokl Akad Nauk SSSR, 1963, 150: 28-31 |
[20] | Oleinik O A, Samokhin V N. Mathematical models in boundary layer theory. Routledge, 2018 |
[21] | Prandtl L. Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhandl. III, Internat Math-Kong, Heidelberg, Teubner, Leipzig, 1904, 452: 575-584 |
[22] |
Paicu M, Zhang P. Global existence and the decay of solutions to the Prandtl system with small analytic data. Arch Ration Mech Anal, 2021, 241(1): 403-446
doi: 10.1007/s00205-021-01654-3 |
[23] |
Sammartino M, Caflisch R E. Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Comm Math Phys, 1998, 192(2): 433-461
doi: 10.1007/s002200050304 |
[24] |
Sammartino M, Caflisch R E. Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution. Comm Math Phys, 1998, 192(2): 463-491
doi: 10.1007/s002200050305 |
[25] | Schlichting H, Gersten K. Boundary-Layer Theory, Enlarged Edition. New York: Springer-Verlag, 2000 |
[26] | Sears W R, Telionis D P. Boundary-layer separation in unsteady flow. SIAM J Math Anal, 1975, 28(1): 215-235 |
[27] |
Shen W, Wang Y, Zhang Z. Boundary layer separation and local behavior for the steady Prandtl equation. Adv Math, 2021, 389: 107896
doi: 10.1016/j.aim.2021.107896 |
[28] |
Wang Y, Williams M. The inviscid limit and stability of characteristic boundary layers for the compressible Navier-Stokes equations with Navier-friction boundary conditions. Ann Inst Fourier (Grenoble), 2013, 62(6): 2257-2314
doi: 10.5802/aif.2749 |
[29] |
Wang Y, Xie F, Yang T. Local well-posedness of Prandtl equations for compressible flow in two space variables. SIAM J Math Anal, 2015, 47(1): 321-346
doi: 10.1137/140978466 |
[30] | Wang Y, Zhu S. Well-posedness of thermal boundary layer equation in two-dimensional incompressible heat conducting flow with analytic datum. Math Methods Appl Sci, 2020, 43(7): 4683-4716 |
[31] |
Wang Y, Zhu S. Back flow of the two-dimensional unsteady Prandtl boundary layer under an adverse pressure gradient. SIAM J Math Anal, 2020, 52(1): 954-966
doi: 10.1137/19M1270355 |
[32] |
Wang Y, Zhu S. On back flow of boundary layers in two-dimensional unsteady incompressible heat conducting flow. J Math Phys, 2022, 63(8): 081504
doi: 10.1063/5.0088618 |
[33] |
Xin Z, Zhang L. On the global existence of solutions to the Prandtl's system. Adv Math, 2004, 181: 88-133
doi: 10.1016/S0001-8708(03)00046-X |
[34] | Xin Z, Zhang L, Zhao J. Global well-posedness and regularity of weak solutions to the Prandtl's system. arXiv:2203.08988v1, 2022 |
[35] |
Xu C, Zhang X. Long time well-posedness of Prandtl equations in Sobolev space. J Differential Equations, 2017, 263(12): 8749-8803
doi: 10.1016/j.jde.2017.08.046 |
[36] |
Zhang P, Zhang Z. Long time well-posedness of Prandtl system with small and analytic initial data. J Funct Anal, 2016, 270(7): 2591-2615
doi: 10.1016/j.jfa.2016.01.004 |
[1] | 杨瑜. 一类非局部时滞的SVIR反应扩散模型的全局吸引性[J]. 数学物理学报, 2021, 41(6): 1864-1870. |
[2] | 丰利香,王德芬. 具有隔离和不完全治疗的传染病模型的全局稳定性[J]. 数学物理学报, 2021, 41(4): 1235-1248. |
[3] | 李振杰,李磊. 带有凸非线性项的分数阶Laplace方程的解的对称性[J]. 数学物理学报, 2020, 40(5): 1224-1234. |
[4] | 张珠洪. 半正迷向曲率的四维Shrinking Gradient Ricci Solitons[J]. 数学物理学报, 2019, 39(5): 1011-1017. |
[5] | 张鑫喆,贺国峰,黄刚. 一类具有接种和潜伏期的传染病模型及动力学分析[J]. 数学物理学报, 2019, 39(5): 1247-1259. |
[6] | 汪兵;徐学文. 具有退化粘性的非齐次双曲守恒律方程的Cauchy问题[J]. 数学物理学报, 2008, 28(1): 109-115. |
[7] | 陈福来;文贤章. 脉冲泛函微分方程的渐近性态[J]. 数学物理学报, 2006, 26(2): 287-296. |
[8] | 张强, 马润年. 时滞细胞神经网络的时滞相关指数稳定性[J]. 数学物理学报, 2004, 4(6): 694-698. |
[9] | 李永祥. 四阶非线性边值问题解的存在性与上下解方法[J]. 数学物理学报, 2003, 23(2): 245-252. |
[10] | 张全德. 非线性双曲方程的整体解的存在性|Blow up及生命跨度[J]. 数学物理学报, 1999, 19(1): 45-52. |
[11] | 赵会江, 严国政. 半线性抛物型方程组Cauchy问题的一点注记[J]. 数学物理学报, 1996, 16(1): 76-85. |
[12] | 朱长江, 赵会江. 可对角化的非齐次拟线性双曲型方程组的Cauchy问题[J]. 数学物理学报, 1995, 15(3): 323-331. |
[13] | 丁夏畦, 吴永辉. 一个半线性抛物型方程组的Cauchy问题[J]. 数学物理学报, 1993, 13(2): 204-215. |
|