数学物理学报 ›› 2023, Vol. 43 ›› Issue (3): 680-690.

• • 上一篇    下一篇

一类与 Klein-Gordon-Maxwell 问题有关的方程组的基态解的存在性

李易娴,张正杰*()   

  1. 华中师范大学数学与统计学院 武汉430079
  • 收稿日期:2021-05-18 修回日期:2022-01-10 出版日期:2023-06-26 发布日期:2023-06-01
  • 通讯作者: 张正杰 E-mail:zjz@mail.ccnu.edu.cn
  • 基金资助:
    国家自然科学基金(11771166)

The Existence of Ground State Solutions for a Class of Equations Related to Klein-Gordon-Maxwell Systems

Li Yixian,Zhang Zhengjie*()   

  1. School of Mathematics and Statistics Central China Normal University, Wuhan 430079
  • Received:2021-05-18 Revised:2022-01-10 Online:2023-06-26 Published:2023-06-01
  • Contact: Zhengjie Zhang E-mail:zjz@mail.ccnu.edu.cn
  • Supported by:
    NSFC(11771166)

摘要:

该文利用临界点理论、变分法以及集中紧性原理等理论方法, 研究如下一类非线性方程组的基态解的存在性.

{Δu+(m+2ωϕ)u=A(x)|u|p2u,Δϕ+λϕ=ωu2,lim|x|u(x)=0,lim|x|ϕ(x)=0.

其中 uH1(R3), ϕH1(R3), λ>0, mω 均为正常数. 如果A(x) 是正常数, 当 $4 时, 上述问题存在基态解 (u,ϕ); 如果 A(x) 是非常值函数, 当 $4 时, 在适当的情况下上述问题存在基态解 (u,ϕ).

关键词: Klein-Gordon-Maxwell 方程, 集中紧性原理, 变分方法, 临界点理论, 基态解

Abstract:

In this paper, we will study the existence of ground state solutions for a class of nonlinear equations by using the theory of compactness of concentration, variational method and critical point theory.

{Δu+(m+2ωϕ)u=A(x)|u|p2u,Δϕ+λϕ=ωu2,lim|x|u(x)=0,lim|x|ϕ(x)=0.

where uH1(R3), ϕH1(R3), λ>0, m and ω are positive constants. Then we study the problem assuming the follwwing two cases on A(x).

If A(x) is a positive constant function, we prove that the ground state solution (u,ϕ) exists for any p(4,6); if A(x) is not a constant function, we prove that the ground state solution (u,ϕ) exists for any p(4,6) under the right conditions.

Key words: Klein-Gordon-Maxwell equation, Principle of concentration compactness, Variational methods, Critical point theory, Ground state solution

中图分类号: 

  • O175.23