1 |
Alfaro M , Berestycki H , Raoul G . The effect of climate shift on a species submitted to dispersion, evolution, growth and nonlocal competition. SIAM J Math Anal, 2017, 49 (1): 562- 596
doi: 10.1137/16M1075934
|
2 |
Bates P W , Fife P C , Ren X , Wang X . Traveling waves in a convolution model for phase transitions. Arch Rational Mech Anal, 1997, 138 (2): 105- 136
doi: 10.1007/s002050050037
|
3 |
Berestycki H , Diekmann O , Nagelkerke C , Zegeling P . Can a species keep pace with a shifting climate?. Bull Math Biol, 2009, 71: 399- 429
doi: 10.1007/s11538-008-9367-5
|
4 |
Berestycki H , Fang J . Forced waves of the Fisher-KPP equation in a shifting environment. J Differential Equations, 2018, 264 (3): 2157- 2183
doi: 10.1016/j.jde.2017.10.016
|
5 |
Berestycki H , Rossi L . Reaction-diffusion equations for population dynamics with forced speed I-The case of the whole space. Discrete Contin Dyn Syst, 2008, 21: 41- 67
doi: 10.3934/dcds.2008.21.41
|
6 |
Berestycki H , Rossi L . Reaction-diffusion equations for population dynamics with forced speed Ⅱ-Cylindrical-type domains. Discrete Contin Dyn Syst, 2009, 25: 19- 61
doi: 10.3934/dcds.2009.25.19
|
7 |
Carr J , Chmaj A . Uniqueness of travelling waves for nonlocal monostable equations. Proc Amer Math Soc, 2004, 132: 2433- 2439
doi: 10.1090/S0002-9939-04-07432-5
|
8 |
Chen X . Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations. Adv Differential Equations, 1997, 2 (1): 125- 160
|
9 |
Cheng H , Yuan R . Stability of traveling wave fronts for nonlocal diffusion equation with delayed nonlocal response. Taiwanese J Math, 2016, 20: 801- 822
|
10 |
Cheng H , Yuan R . Existence and asymptotic stability of traveling fronts for nonlocal monostable evolution equations. Discrete Contin Dyn Syst, 2017, 22 (7): 3007- 3022
|
11 |
Cheng H , Yuan R . Existence and stability of traveling waves for Leslie-Gower predator-prey system with nonlocal diffusion. Discrete Contin Dyn Syst, 2017, 37 (10): 5422- 5454
|
12 |
Cheng H , Yuan R . Traveling waves of a nonlocal dispersal Kermack-McKendrick epidemic model with delayed transmission. J Evol Equ, 2017, 17: 979- 1002
doi: 10.1007/s00028-016-0362-2
|
13 |
Cheng H , Yuan R . Traveling waves of some Holling-Tanner predator-prey system with nonlocal diffusion. Appl Math Comput, 2018, 338 (1): 12- 24
|
14 |
Coville J , Dupaigne L . Propagation speed of travelling fronts in non local reaction-diffusion equations. Nonlinear Anal, 2005, 60 (5): 797- 819
doi: 10.1016/j.na.2003.10.030
|
15 |
Coville J , Dupaigne L . On a non-local equation arising in population dynamics. Proc Roy Soc Edinburgh Sect A, 2007, 137 (4): 727- 755
doi: 10.1017/S0308210504000721
|
16 |
Fang J , Lou Y , Wu J . Can pathogen spread keep pace with its host invasion?. SIAM J Appl Math, 2016, 76 (4): 1633- 1657
doi: 10.1137/15M1029564
|
17 |
Hu H , Yi T , Zou X . On spatial-temporal dynamics of a Fisher-KPP equation with a shifting environment. Proc Amer Math Soc, 2020, 148 (1): 113- 221
|
18 |
Hu H , Zou X . Existence of an extinction wave in the Fisher equation with a shifting habitat. Proc Amer Math Soc, 2017, 145 (11): 4763- 4771
doi: 10.1090/proc/13687
|
19 |
Hutson V , Grinfeld M . Non-local dispersal and bistability. European J Appl Math, 2006, 17 (2): 221- 232
doi: 10.1017/S0956792506006462
|
20 |
Hutson V , Shen W , Vickers G . Spectral theory for nonlocal dispersal with periodic or almost-periodic time dependence. Rocky Mountain J Math, 2008, 38 (4): 1147- 1175
|
21 |
Li B , Bewick S , Shang J , Fagan W F . Persistence and spread of a species with a shifting habitat edge. SIAM J Appl Math, 2014, 74 (5): 1397- 1417
doi: 10.1137/130938463
|
22 |
Li W , Wang J , Zhao X . Spatial dynamics of a nonlocal dispersal population model in a shifting environment. J Nonlinear Sci, 2018, 28 (4): 1189- 1219
doi: 10.1007/s00332-018-9445-2
|
23 |
Murray J D. Mathematical Biology. Ⅱ: Spatial Models and Biomedical Applications. New York: Springer-Verlag, 2003
|
24 |
Van Der Waals J D. On the continuity of the gaseous and liquid states. Translated from the Dutch. Edited and with an introduction by Rowlinson J S. Studies in Statistical Mechanics. Amsterdam: North-Holland Publishing Co, 1988
|
25 |
Vo H H . Persistence versus extinction under a climate change in mixed environments. J Differential Equations, 2015, 259 (10): 4947- 4988
doi: 10.1016/j.jde.2015.06.014
|
26 |
Wang J , Zhao X . Uniqueness and global stability of forced waves in a shifting environment. Proc Amer Math Soc, 2019, 147: 1467- 1481
|
27 |
Wu C , Yang Y , Wu Z . Existence and uniqueness of forced waves in a delayed reaction-diffusion equation in a shifting environment. Nonlinear Analysis: Real World Applications, 2021, 57: 103198
doi: 10.1016/j.nonrwa.2020.103198
|
28 |
Wu J , Zou X . Traveling wave fronts of reaction-diffusion systems with delay. J Dynam Differential Equations, 2001, 13 (3): 651- 687
doi: 10.1023/A:1016690424892
|
29 |
Zhang G , Zhao X . Propagation dynamics of a nonlocal dispersal Fisher-KPP equation in a time-periodic shifting habitat. J Differential Equations, 2020, 268 (6): 2852- 2885
doi: 10.1016/j.jde.2019.09.044
|