1 |
Alves C O , Gao F S , Squassina M , Yang M B . Singularly perturbed critical Choquard equations. J Differential Equations, 2017, 263 (7): 3943- 3988
doi: 10.1016/j.jde.2017.05.009
|
2 |
Alves C O, Miyagaki O H. Existence and concentration of solution for a class of fractional elliptic equation in $ {{\Bbb R}} ^{N} $ via penalization method. Calc Var Partial Differential Equations, 2016, 55(3), Article number: 47
|
3 |
Alves C O , Ambrosio V . A multiplicity result for a nonlinear fractional Schödinger equation in $ {{\Bbb R}} ^{N} $ without the Ambrosetti-Rabinowitz condition. J Math Anal Appl, 2018, 466 (1): 498- 522
doi: 10.1016/j.jmaa.2018.06.005
|
4 |
Ambrosio V . Multiplicity and concentration results for a fractional Choquard equation via penalization method. Potential Anal, 2019, 50 (1): 55- 82
doi: 10.1007/s11118-017-9673-3
|
5 |
Ambrosio V . Concentration phenomena for a fractional Choquard equation with magnetic field. Dyn Partial Differ Equa, 2019, 16 (2): 125- 149
doi: 10.4310/DPDE.2019.v16.n2.a2
|
6 |
Applebaum D . L$ \acute{\rm e} $vy processes-from probability to finance and quantum groups. Not Amer Math Soc, 2004, 51 (11): 1336- 1347
|
7 |
Benci V , Cerami G . Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology. Calc Var Partial Differential Equations, 1994, 2 (1): 29- 48
doi: 10.1007/BF01234314
|
8 |
Cassani D , Zhang J J . Choquard-type equations with Hardy-Littlewood-Sobolev upper-critical growth. Adv Nonlinear Anal, 2019, 8 (1): 1184- 1212
|
9 |
Cingolani S , Lazzo M . Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions. J Differential Equations, 2000, 160 (1): 118- 138
doi: 10.1006/jdeq.1999.3662
|
10 |
Chen S T , Tang X H , Wei J Y . Nehari-type ground state solutions for a Choquard equation with doubly critical exponents. Adv Nonlinear Anal, 2021, 10 (1): 152- 171
|
11 |
Di Nezza E , Palatucci G , Valdinoci E . Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136 (5): 521- 573
doi: 10.1016/j.bulsci.2011.12.004
|
12 |
Felmer F , Quaas A , Tan J G . Positive solutions of the nonlinear Schrödinger equation with the fractional Laplace. Proc Roy Soc Edinburgh Sect A, 2012, 142 (6): 1237- 1262
doi: 10.1017/S0308210511000746
|
13 |
Figueiredo G M, Siciliano G. A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for fractional Schödinger equation in $ {{\Bbb R}} ^{N} $. NoDEA Nonlinear Differential Equations Appl, 2016, 23(2), Article number:12
|
14 |
Gao F S , Yang M B , Zhou J H . Existence of multiple semiclassical solutions for a critical Choquard equation with indefinite potential. Nonlinear Anal, 2020, 195: 111817
doi: 10.1016/j.na.2020.111817
|
15 |
He X M , Radulescu V D . Small linear perturbations of fractional Choquard equations with critical exponent. J Differential Equations, 2021, 282: 481- 540
doi: 10.1016/j.jde.2021.02.017
|
16 |
Lan F Q , He X M . The Nehari manifold for a fractional critical Choquard equation involving sign-changing weight functions. Nonlinear Anal, 2019, 180: 236- 263
doi: 10.1016/j.na.2018.10.010
|
17 |
Laskin N . Fractional Schrödinger equation. Phys Rev E, 2002, 66 (5): 056108
doi: 10.1103/PhysRevE.66.056108
|
18 |
Lieb E, Loss M. Analysis. Providence, RI: American Mathematical Society, 2001
|
19 |
Moroz V , Van Schaftingen J . Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J Funct Anal, 2013, 265 (2): 153- 184
doi: 10.1016/j.jfa.2013.04.007
|
20 |
Moroz V , Van Schaftingen J . Existence of groundstates for a class of nonlinear Choquard equations. Trans Amer Math Soc, 2015, 367 (9): 6557- 6579
|
21 |
Moroz V , Van Schaftingen J . Semi-classical states for the Choquard equation. Calc Var Partial Differential Equations, 2015, 52 (1/2): 199- 235
|
22 |
Moser J . A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations. Comm Pure Appl Math, 1960, 13: 457- 468
doi: 10.1002/cpa.3160130308
|
23 |
Palatucci G , Pisante A . Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calc Var Partial Differential Equations, 2014, 50 (3/4): 799- 829
|
24 |
Rabinowitz P H . On a class of nonlinear Schrödinger equations. Z Angew Math Phys, 1992, 43 (2): 270- 291
doi: 10.1007/BF00946631
|
25 |
Su Y , Wang L , Chen H B , Liu S L . Multiplicity and concentration results for fractional Choquard equations: doubly critical case. Nonlinear Anal, 2020, 198: 111872
doi: 10.1016/j.na.2020.111872
|
26 |
Silvestre L . Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm Pure Appl Math, 2007, 60 (1): 67- 112
doi: 10.1002/cpa.20153
|
27 |
Tang X H , Cheng B T . Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J Differential Equations, 2016, 261 (4): 2384- 2402
doi: 10.1016/j.jde.2016.04.032
|
28 |
Tang X H , Chen S T . Singularly perturbed Choquard equations with nonlinearity satisfying Berestycki-Lions assumptions. Adv Nonlinear Anal, 2020, 9 (1): 413- 437
|
29 |
Willem M . Minimax Theorems. Boston: Birkhäuser, 1996
|
30 |
Xiang M Q , Radulescu V D , Zhang B L . A critical fractional Choquard-Kirchhoff problem with magnetic field. Commun Contemp Math, 2019, 21 (4): 1850004
doi: 10.1142/S0219199718500049
|
31 |
Yang Z P , Zhao F K . Multiplicity and concentration behaviour of solutions for a fractional Choquard equation with critical growth. Adv Nonlinear Anal, 2021, 10 (1): 732- 774
|
32 |
Zhang H , Zhang F B . Multiplicity and concentration of solutions for Choquard equations with critical growth. J Math Anal Appl, 2020, 481 (1): 123457
doi: 10.1016/j.jmaa.2019.123457
|
33 |
Zhang H , Wang J , Zhang F B . Semiclassical states for fractional Choquard equations with critical growth. Commun Pure Appl Anal, 2019, 18 (1): 519- 538
doi: 10.3934/cpaa.2019026
|
34 |
Zhang Y P , Tang X H , Radulescu V D . High perturbations of Choquard equations with critical reaction and variable growth. Proc Amer Math Soc, 2021, 149 (9): 3819- 3835
doi: 10.1090/proc/15469
|