数学物理学报 ›› 2022, Vol. 42 ›› Issue (2): 470-490.

• 论文 • 上一篇    下一篇

分数阶Choquard方程正解的存在性、多重性和集中现象

张伟强*(),赵培浩()   

  1. 兰州大学数学与统计学院 兰州 730000
  • 收稿日期:2021-04-22 出版日期:2022-04-26 发布日期:2022-04-18
  • 通讯作者: 张伟强 E-mail:zhangwq19@lzu.edu.cn;zhaoph@lzu.edu.cn
  • 作者简介:赵培浩, E-mail: zhaoph@lzu.edu.cn
  • 基金资助:
    国家自然科学基金(11471147)

Existence, Multiplicity and Concentration of Positive Solutions for a Fractional Choquard Equation

Weiqiang Zhang*(),Peihao Zhao()   

  1. School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000
  • Received:2021-04-22 Online:2022-04-26 Published:2022-04-18
  • Contact: Weiqiang Zhang E-mail:zhangwq19@lzu.edu.cn;zhaoph@lzu.edu.cn
  • Supported by:
    the NSFC(11471147)

摘要:

该文考虑了下面的次临界的分数阶Choquard方程 正解的存在性、多重性和集中现象, 这里ε>0是一个常数, s(0,1), (Δ)s是分数阶Laplace算子, 位势V:RNR是正的且有全局极小, 0<μ<min{4s,N}, 非线性项fC1(R,R)是次临界增长的, Ff的原函数.该文的主要研究方法是变分法和Ljusternik-Schnirelmann理论.

关键词: 分数阶Choquard方程, 变分法, Ljusternik-Schnirelmann理论, 正解, 集中现象

Abstract:

We are concerned with the existence, multiplicity and concentration of positive solutions for the following fractional Choquard equation with subcritical nonlinearity where ε>0 is a parameter, s(0,1), (Δ)s is the fractional Laplace operator, V:RNR is a positive potential having global minimum, 0<μ<min{4s,N}, and F is the primitive of fC1(R,R) which is subcritical growth. The main research methods of this article are variational method and the Ljusternik-Schnirelmann theory.

Key words: Fractional Choquard equation, Variational method, Ljusternik-Schnirelmann theory, Positive solution, Concentrating phenomenon.

中图分类号: 

  • O175.2