1 |
Ahn J , Yoon C . Global well-posedness and stability of constant equilibria in parabolicelliptic chemotaxis systems without gradinet sensing. Nonlinearity, 2019, 32 (4): 1327- 1351
doi: 10.1088/1361-6544/aaf513
|
2 |
Amann H . Dynamic theory of quasilinear parabolic equations. Ⅱ: Reaction-diffusion systems. Differ Integral Equ, 1990, 3: 13- 75
|
3 |
Amann H. Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems// Schmeisser H, Triebel H. Function Spaces, Differential Operators and Nonlinear Analysis. Wiesbaden: Vieweg+Teubner Verlag, 1993, 133: 9-126
|
4 |
Bellomo N , Bellouquid A , Tao Y S , Winkler M . Towards a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math Models Methods Appl Sci, 2015, 25: 1663- 1763
doi: 10.1142/S021820251550044X
|
5 |
Chaplain M, Anderson A. Mathematical modelling of tissue invasion//Preziosi L. Cancer Modelling and Simulation. Boca Raton, FL: Chapman Hall/CRC, 2003: 269-297
|
6 |
Cie'slak T , Stinner C . Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. J Diff Equ, 2012, 252: 5832- 5851
doi: 10.1016/j.jde.2012.01.045
|
7 |
Cie'slak T , Stinner C . New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models. J Diff Equ, 2015, 258: 2080- 2113
doi: 10.1016/j.jde.2014.12.004
|
8 |
Cie'slak T , Winkler M . Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity, 2008, 21: 1057- 1076
doi: 10.1088/0951-7715/21/5/009
|
9 |
Cie'slak T , Winkler M . Stabilization in a higher-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity. Nolinear Anal, 2017, 159: 129- 144
doi: 10.1016/j.na.2016.04.013
|
10 |
Cie'slak T , Winkler M . Global bounded solutions in a two-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity. Nonlinear Anal Real World Appl, 2017, 35: 1- 19
doi: 10.1016/j.nonrwa.2016.10.002
|
11 |
Fu X , Tang L , Liu C , et al. Stripe formation in bacterial system with density-suppressed motility. Phys Rev Lett, 2012, 108: 198102
doi: 10.1103/PhysRevLett.108.198102
|
12 |
Fujie K , Ito A , Yokota T . Existence and uniqueness of local classical solutions to modified tumor invasion models of Chaplain-Anderson type. Adv Math Sci Appl, 2014, 24: 67- 84
|
13 |
Fujie K , Ito A , Winkler M , Yokota T . Stabilization in a chemotaxis model for tumor invasion. Discrete Contin Dyn Syst, 2016, 36: 151- 169
|
14 |
Herrero M A , Vel'azquez J L . A blow-up mechanism for a chemotaxis model. Ann Scuola Norm Sup Pisa Cl Sci, 1997, 24: 633- 683
|
15 |
Hillen T , Potapov A . The one-dimensional chemotaxis model: global existence and asymptotic profile. Math Methods Appl Sci, 2004, 27: 1783- 1801
doi: 10.1002/mma.569
|
16 |
Horstmann D , Winkler M . Boundedness vs blow-up in a chemotaxis system. J Diff Equ, 2005, 215: 52- 107
doi: 10.1016/j.jde.2004.10.022
|
17 |
Hu B , Tao Y S . To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production. Math Models Methods Appl Sci, 2016, 26: 2111- 2128
doi: 10.1142/S0218202516400091
|
18 |
Ishida S , Seki K , Yokota T . Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains. J Diff Equ, 2014, 256: 2993- 3010
doi: 10.1016/j.jde.2014.01.028
|
19 |
J$\ddot{\rm a}$ger W , Luckhaus S . On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans Amer Math Soc, 1992, 329: 819- 824
doi: 10.1090/S0002-9947-1992-1046835-6
|
20 |
Jin H Y , Kim Y J , Wang Z A . Boundedness, stabilization, and pattern formation driven by density-suppressed motility. SIAM J Appl Math, 2018, 78: 1632- 1657
doi: 10.1137/17M1144647
|
21 |
Jin H Y , Liu Z , Shi S . Global dynamics of a quasilinear chemotaxis model arising from tumor invasion. Nonlinear Anal Real World Appl, 2018, 44: 18- 39
doi: 10.1016/j.nonrwa.2018.04.006
|
22 |
Jin H Y , Liu Z , Shi S , Xu J . Boundedness and stabilization in two-species chemotaxiscompetition system with signal-dependent diffusion and sensitivity. J Diff Equ, 2019, 267: 494- 524
doi: 10.1016/j.jde.2019.01.019
|
23 |
Jin H Y , Wang Z A . Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion. European J of Appl Math, 2020, 32 (4): 1- 31
|
24 |
Jin H Y , Xiang T . Boundedness and exponential convergence in a chemotaxis model for tumor invasion. Nonlinearity, 2016, 29: 3579- 3596
doi: 10.1088/0951-7715/29/12/3579
|
25 |
Ladyzhenskaya O A, Solonnikov V A, Uralceva N N. Linear and Quasilinear Equations of Parabolic Type. Providence, RI: Amer Math Soc, 1968
|
26 |
Liu C . Sequential establishment of stripe patterns in an expanding cell population. Sci, 2011, 334: 238- 241
doi: 10.1126/science.1209042
|
27 |
Lou Y , Winkler M . Global existence and uniform boundedness of smooth solutions to a cross-diffusion system with equal diffusion rates. Comm Part Diff Equ, 2015, 40 (10): 1905- 1941
doi: 10.1080/03605302.2015.1052882
|
28 |
Mizoguchi N , Souplet P . Nondegeneracy of blow-up points for the parabolic Keller-Segel system. Ann Inst H Poincar'e Anal Non Lin'eaire, 2014, 31: 851- 875
doi: 10.1016/j.anihpc.2013.07.007
|
29 |
Nagai T . Blow-up of radially symmetric solutions to a chemotaxis system. Adv Math Sci Appl, 1995, 5: 581- 601
|
30 |
Senba T , Yoshida K . Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkcial Ekvac, 1997, 40: 411- 433
|
31 |
Osaki K , Yagi A . Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkcial Ekvac, 2001, 44: 441- 469
|
32 |
Porzio M , Vespri V . H$\ddot{\rm o}$lder estimates for local solutions of some doubly nonlinear degenerate parabolic equations. J Diff Equ, 1993, 103: 146- 178
doi: 10.1006/jdeq.1993.1045
|
33 |
Senba T , Suzuki T . Parabolic system of chemotaxis: blowup in a finite and the infinite time. Methods Appl Anal, 2001, 8: 349- 367
doi: 10.4310/MAA.2001.v8.n2.a9
|
34 |
Souplet P, Quittner P. Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States. Boston: Birkauser, 2007
|
35 |
Stinner C , Surulescu C , Winkler M . Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J Math Anal, 2014, 46: 1969- 2007
doi: 10.1137/13094058X
|
36 |
Tao Y S , Winkler M . Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J Diff Equ, 2012, 252: 692- 715
doi: 10.1016/j.jde.2011.08.019
|
37 |
Tao Y S , Winkler M . Large time behavior in a multidimensional chemotaxis haptotaxis model with slow signal diffusion. SIAM J Math Anal, 2015, 47: 4229- 4250
doi: 10.1137/15M1014115
|
38 |
Tao Y S , Winkler M . Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production. J Eur Math Soc(JEMS), 2017, 19: 3641- 3678
doi: 10.4171/JEMS/749
|
39 |
Tao Y S , Winkler M . Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system. Math Models Meth Appl Sci, 2017, 27 (19): 1645- 1683
|
40 |
Wang Z A , Hillen T . Classical solutions and pattern formation for a volume filling chemotaxis model. Chaos, 2007, 17: 037108
doi: 10.1063/1.2766864
|
41 |
Winkler M . Aggregation vs global diffusive behavior in the higher-dimensional Keller-Segel model. J Diff Equ, 2010, 248: 2889- 2905
doi: 10.1016/j.jde.2010.02.008
|
42 |
Winkler M . Does a "volume-filling effect" always prevent chemotactic collapse?. Math Methods Appl Sci, 2010, 33: 12- 24
doi: 10.1002/mma.1146
|
43 |
Winkler M . Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J Math Pures Appl, 2013, 100: 748- 767
doi: 10.1016/j.matpur.2013.01.020
|
44 |
Winkler M . Aggregation vs global diffusive behavior in the higher-dimensional Keller-Segel model. J Diff Equ, 2010, 248: 2889- 2905
doi: 10.1016/j.jde.2010.02.008
|