数学物理学报 ›› 2022, Vol. 42 ›› Issue (2): 502-519.

• 论文 • 上一篇    下一篇

一类描述肿瘤入侵与具有信号依赖机制的趋化模型有界性与稳定性分析

史诗洁1,刘正荣2,赵晖2,*()   

  1. 1 深圳技术大学大数据与互联网学院 广东 深圳 518118
    2 华南理工大学数学学院 广州 510640
  • 收稿日期:2020-12-03 出版日期:2022-04-26 发布日期:2022-04-18
  • 通讯作者: 赵晖 E-mail:shishijie@sztu.edu.cn
  • 基金资助:
    国家自然科学基金(62172164);国家自然科学基金(12026608);国家自然科学基金(11971176);国家自然科学基金(11901400)

Boundedness and Stabilization of a Chemotaxis Model Describing Tumor Invasion with Signal-Dependent Motility

Shijie Shi1,Zhengrong Liu2,Hui Zhao2,*()   

  1. 1 College of Big Data and Internet, Shenzhen Technology University, Guangdong Shenzhen 518118
    2 School of Mathematics, South China University of Technology, Guangzhou 510640
  • Received:2020-12-03 Online:2022-04-26 Published:2022-04-18
  • Contact: Hui Zhao E-mail:shishijie@sztu.edu.cn
  • Supported by:
    the NSFC(62172164);the NSFC(12026608);the NSFC(11971176);the NSFC(11901400)

摘要:

该文将研究如下问题 其中, 有界区域$\Omega\subset\mathbb{R} ^n(1\leqq n\leqq 5)$具有光滑边界, $\nu$表示$\partial \Omega$的外法向量, 且$0<\gamma(v)\in C^3[0, \infty)$.在合适的初始条件下, 该文分两种情形来研究模型的全局经典解的存在性与有界性:$ \bullet\; 1\leq n\leq 3$;$ \bullet \;4\leq n\leq 5$, $\gamma_2\geq \gamma(v)\geq \gamma_1>0$, 且$\left|\gamma'(v)\right|\leq \gamma_3 $, $v \in [0, \infty)$, 其中常数$\gamma_i>0\ (i=1, 2, 3)$.接着, 该文计算得到当$t\rightarrow\infty$时, 其解$(u, v, w, z)$将指数收敛到平衡点$(\bar{u}_0, \bar{v}_0+\bar{w}_0, 0, \bar{u}_0)$, 其中$\bar{u}_0=\frac{1}{\left|\Omega\right|}\int_{\Omega}u_0{\rm d}x$, $\bar{v}_0=\frac{1}{\left|\Omega\right|}\int_{\Omega}v_0{\rm d}x$, $\bar{w}_0=\frac{1}{\left|\Omega\right|}\int_{\Omega}w_0{\rm d}x$.

关键词: 趋化模型, 整体存在性, 长时间行为

Abstract:

In this paper, we study the following problem in a bounded domain $\Omega\subset\mathbb{R} ^n(1\leqq n\leqq 5)$ with smooth boundary and $\nu$ denotes the outward normal vector of $\partial \Omega$, where $0 <\gamma(v)\in C^3[0, \infty)$. Under suitably regular initial data, we show the existence of global classical solution with uniform-in-time bound under one of the following conditions$ \bullet\; 1\leq n\leq 3$,$ \bullet\; 4\leq n\leq 5$ and $\gamma_2\geq \gamma(v)\geq \gamma_1>0$,$\left|\gamma'(v)\right|\leq \gamma_3, $ $v\in [0, \infty)$ with some constants $\gamma_i>0\ (i=1, 2, 3)$.Moreover, we confirm that the solution $(u, v, w, z)$ will exponentially converge to the homogeneous equilibrium $(\bar{u}_0, \bar{v}_0+\bar{w}_0, 0, \bar{u}_0)$ as $t\rightarrow\infty$, where $\bar{u} _0: =\frac{1}{\left|\Omega\right|}\int_{\Omega}u_0{\rm d}x$, $\bar{v}_0: =\frac{1}{\left|\Omega\right|}\int_{\Omega}v_0{\rm d}x$ and $\bar{w}_0: =\frac{1}{\left|\Omega\right|}\int_{\Omega}w_0{\rm d}x$.

Key words: Chemotaxis model, Global existence, Large time behavior.

中图分类号: 

  • O175.2