1 |
Saint-Venant De . Mémoire sur la flexion des prismes. J Math Pures Appl, 1856, 1 (2): 89- 189
|
2 |
Boley B A . The determination of temperature, stresses and deflection in two-dimensional thermoelastic problem. J Aero Sci, 1956, 23, 67- 75
doi: 10.2514/8.3503
|
3 |
Ames K A , Payne L E , Schaefer P W . Spatial decay estimates in time-dependent Stokes flow. SIAM J Math Anal, 1993, 24, 1395- 1413
doi: 10.1137/0524081
|
4 |
Horgan C O , Wheeler L T . Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow. SIAM J Appl Math, 1978, 35, 97- 116
doi: 10.1137/0135008
|
5 |
Lin C , Payne L E . Spatial decay bounds in time dependent pipe flow of an incompressible viscous fluid. SIAM J Appl Math, 2005, 65, 458- 475
|
6 |
Horgan C O , Payne L E , Wheeler L T . Spatial decay estimates in transient heat equation. Quart Appl Math, 1984, 42, 119- 127
doi: 10.1090/qam/736512
|
7 |
Hameed A A , Harfash A J . Continuous dependence of double diffusive convection in a porous medium with temperature-dependent density. Basrah Journal of Science, 2019, 37, 1- 15
|
8 |
Liu Y , Li Y F , Lin Y W , Yao Z . Spatial decay bounds for the channel flow of the Boussinesq equations. J Math Anal Appl, 2011, 381, 87- 109
doi: 10.1016/j.jmaa.2011.02.066
|
9 |
Li Y F , Liu Y , Lin C . Decay estimates for homogeneous Boussinesq equations in a semi-infinite pipe. Nonlinear Analysis, 2011, 74, 4399- 4417
doi: 10.1016/j.na.2011.03.062
|
10 |
Li Y F , Lin C . Spatial decay for solutions to 2-D Boussinesq system with variable thermal diffusivity. Acta Applicandae Mathematicae, 2017, 154, 111- 130
|
11 |
Liu Y , Qiu H , Lin C . Spatial decay bounds of solutions to the Navier-Stokes equations for transient compressible viscous flow. J Korean Math Soc, 2011, 48 (6): 1153- 1170
doi: 10.4134/JKMS.2011.48.6.1153
|
12 |
Boley B A . Upper bounds and Saint-Venant's principle for transient heat conduction. Quart Appl Math, 1960, 18, 205- 207
doi: 10.1090/qam/112591
|
13 |
Horgan C O , Payne L E . Phragmén-Lindelöf type results for harmonic functions with nonlinear boundary conditions. Arch Rational Mech Anal, 1993, 122, 123- 144
doi: 10.1007/BF00378164
|
14 |
Lin C , Payne L E . Phragmén-Lindelöf alternative for a class of quasilinear second order parabolic problems. Diff Integ Equa, 1995, 8, 539- 551
|
15 |
Lin C , Payne L E . A Phragmén-Lindelöf type results for second order quasilinear parabolic equation in R2. Z Angew Math Phys, 1994, 45, 294- 311
doi: 10.1007/BF00943507
|
16 |
Liu Y , Lin C . Phragmén-Lindelöf type alternative results for the Stokes flow equation. Mathematical Inequalities & Applications, 2006, 9 (4): 671- 694
|
17 |
Leseduarte M C , Quintanilla R . Phragmén-Lindelöf alternative for the Laplace equation with dynamic boundary conditions. Journal of Applied Analysis and Computation, 2017, 7 (4): 1323- 1335
|
18 |
Payne L E , Schaefer P W . Some Phragmén-Lindelöf type results for the biharmonic equation. Z Angew Math Phys, 1994, 45, 414- 432
doi: 10.1007/BF00945929
|