数学物理学报 ›› 2020, Vol. 40 ›› Issue (5): 1235-1247.

• 论文 • 上一篇    下一篇

含Φ-Laplace算子和凹凸非线性项的拟线性椭圆型方程正解的分歧性

王明旻(),贾高*()   

  1. 上海理工大学理学院 上海 200093
  • 收稿日期:2019-10-15 出版日期:2020-10-26 发布日期:2020-11-04
  • 通讯作者: 贾高 E-mail:745136863@qq.com;gaojia89@163.com
  • 作者简介:王明旻, E-mail:745136863@qq.com
  • 基金资助:
    国家自然科学基金(11171220)

Bifurcation of Positive Solutions for Quasilinear Elliptic Equations with Φ-Laplacian Operator and Concave-Convex Nonlinearities

Mingmin Wang(),Gao Jia*()   

  1. School of Science, University of Shanghai for Science and Technology, Shanghai 200093
  • Received:2019-10-15 Online:2020-10-26 Published:2020-11-04
  • Contact: Gao Jia E-mail:745136863@qq.com;gaojia89@163.com
  • Supported by:
    the NSFC(11171220)

摘要:

该文利用临界点理论、截断技巧和比较原理,研究了一类含Φ-Laplace算子和凹凸非线性项的拟线性椭圆型方程正解关于参数λ的分歧性,进一步得到了最小正解的存在性和关于参数λ的单调性.

关键词: 拟线性椭圆型方程, 分歧性, 截断技巧

Abstract:

In this paper, we study the bifurcation of positive solutions about parameter λ for the quasilinear elliptic equations with Φ-Laplacian operator and concave-convex nonlinearities by using the critical point theory, appropriate truncation and comparison techniques. Furthermore, we obtain the existence of the smallest positive solution and the monotonicity with respect to parameter λ.

Key words: Quasilinear elliptic equation, Bifurcation, Truncation techniques

中图分类号: 

  • O175.3