1 |
Fritz J . Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math, 1979, 28, 235- 268
doi: 10.1007/BF01647974
|
2 |
Glassey R T . Finite-time blow-up for solutions of nonlinear wave equations. Math Z, 1981, 177, 323- 340
doi: 10.1007/BF01162066
|
3 |
Strauss W A . Nonlinear scattering theory at low energy. J Funct Anal, 1981, 41, 110- 133
doi: 10.1016/0022-1236(81)90063-X
|
4 |
Sideris T C . Nonexistence of global solutions to semilinear wave equations in high dimensions. J Differential Equations, 1984, 52, 378- 406
doi: 10.1016/0022-0396(84)90169-4
|
5 |
Zhou Y . Cauchy problem for semilinear wave equations in four space dimensions with small initial data. J Partial Differential Equations, 1995, 8, 135- 144
|
6 |
Georgiev V , Lindblad H , Sogge C D . Weighted Strichartz estimates and global existence for semilinear wave equations. Amer J Math, 1997, 119, 1291- 1319
doi: 10.1353/ajm.1997.0038
|
7 |
Shaeffer J . The equation $u_{tt}-\Delta u=|u|^{p}$ for the critical value of p. Proc Roy Soc Edinburgh Sect A, 1985, 101, 31- 44
doi: 10.1017/S0308210500026135
|
8 |
Yordanov B T , Zhang Q S . Finite time blow up for critical wave equations in high dimensions. J Funct Anal, 2006, 231, 361- 374
doi: 10.1016/j.jfa.2005.03.012
|
9 |
Zhou Y . Blow up of solutions to semilinear wave equations with critical exponent in high diensions. Chin Ann Math Ser B, 2007, 28, 205- 212
doi: 10.1007/s11401-005-0205-x
|
10 |
Sobajima M, Wakasa K. Finite time blowup of solutions to semilinear wave equation in an exterior domain. 2018, arXiv: 1812.09128
|
11 |
Du Y , Metcalfe J , Sogge C D , Zhou Y . Concerning the Strauss conjecture and almost global existence for nonlinear Dirichlet-wave equations in 4-dimensions. Comm Partial Differential Equations, 2008, 33 (79): 1487- 1506
|
12 |
Hidanoidano K , Metcalfe J , Smith H F , et al. On abstract Strichartz estimates and the Strauss conjecture for nontrapping obstacles. Trans Amer Math Soc, 2010, 362, 2789- 2809
|
13 |
Yu X . Generalized Strichartz estimates on perturbed wave equation and applications on Strauss conjecture. Differential Integral Equations, 2011, 24, 443- 468
|
14 |
Zhou Y , Han W . Blow-up for solutions to semilinear wave equations with variable coefficients and boundary. J Math Anal Appl, 2011, 374, 585- 601
doi: 10.1016/j.jmaa.2010.08.052
|
15 |
Zha D , Zhou Y . Lifespan of classical solutions to quasilinear wave equations outside of a star-shaped obstacle in four space dimensions. J Math Pures Appl, 2015, 103 (9): 788- 808
|
16 |
Lai N A , Zhou Y . Finite time blow up to critical semilinear wave equation outside the ball in 3D. Nonlinear Anal, 2015, 125, 550- 560
doi: 10.1016/j.na.2015.06.007
|
17 |
Lai N A , Zhou Y . Nonexistence of global solutions to critical semilinear wave equationn in exterior domain in high dimensions. Nonlinear Anal, 2016, 143, 89- 104
doi: 10.1016/j.na.2016.05.010
|
18 |
Zhang Q D . Global existence and finite time blow up for the weighted semilinear wave equation. Nonlinear Analysis: Real World Applications, 2020, 51, 103006
doi: 10.1016/j.nonrwa.2019.103006
|
19 |
Ikeda M , Sobajima M . Remark on upper bound for lifespan of solutions to evolution equations in a two-dimensional exterior domain. J Math Anal Appl, 2019, 470 (1): 318- 326
|
20 |
Ikeda M, Sobajima M. Upper bound for lifespan of solutions to certain semilinear parabolic, dispersive and hyperbolic equations via a unified test function method. 2017, arXiv: 1710.06780
|