1 |
Colin M , Jeanjean L , Squassina M . Stability and instability results for standing waves of quasilinear Schrödinger equations. Nonlinearity, 2010, 23, 1353- 1385
doi: 10.1088/0951-7715/23/6/006
|
2 |
Colin M . On the local well-posedness of quasilinear Schrödinger equations in arbitrary space dimension. Comm Partial Differential Equations, 2002, 27, 325- 354
doi: 10.1081/PDE-120002789
|
3 |
Kenig C E , Ponce G , Vega L . The Cauchy problem for quasi-linear Schrödinger equations. Invent Math, 2004, 158, 343- 388
doi: 10.1007/s00222-004-0373-4
|
4 |
Poppenberg M . On the local well posedness of quasi-linear Schrödinger equations in arbitrary space dimension. J Differential Equations, 2001, 172, 83- 115
doi: 10.1006/jdeq.2000.3853
|
5 |
Glassey R T . On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J Math Phys, 1977, 18, 1794- 1797
doi: 10.1063/1.523491
|
6 |
Cao P . Global existence and uniqueness for the magnetic Hartree equation. J Evol Equ, 2011, 11, 811- 825
doi: 10.1007/s00028-011-0112-4
|
7 |
Cho Y , Hajaiej H , Hwang G , Ozawa T . On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity. Funkcialaj Ekvacioj, 2013, 56, 193- 224
doi: 10.1619/fesi.56.193
|
8 |
Cho Y . Short-range scattering of Hartree type fractional NLS. J Differential Equations, 2017, 262, 116- 144
doi: 10.1016/j.jde.2016.09.025
|
9 |
Ivanov A , Venkov G . Existence and uniqueness result for the Schrödinger-Poisson system and Hartree equation in Sobolev spaces. J Evol Equ, 2008, 8, 217- 229
doi: 10.1007/s00028-008-0334-2
|
10 |
Zagatti S . The Cauchy problem for Hartree-Fock time-dependent equations. Annales de L'I H P Section A, 1992, 56, 357- 374
|
11 |
Cazenave T. Semilinear Schrödinger Equations. New York: Amer Math Soc, 2003
|
12 |
Bouard A de , Hayashi N , Saut J C . Global existence of small solutions to a relativistic nonlinear Schrödinger equation. Commun Math Phys, 1997, 189, 73- 105
doi: 10.1007/s002200050191
|
13 |
Guo B , Chen J , Su F . The "blow up" problem for a quasilinear Schrödinger equation. J Math Phys, 2005, 46, 073510
doi: 10.1063/1.1941089
|
14 |
Song X F, Wang Z Q. Global existence and blowup phenomena as well as asymptotic behavior for the solution of quasilinear Schrödinger equation. 2018, arXiv: 1811.05136
|