1 |
Fakhi S . Positive solutions of △u + up=0 whose singular set is a manifold with boundary. Calc Var Partial Differential Equations, 2003, 17 (2): 179- 197
doi: 10.1007/s00526-002-0165-x
|
2 |
Evans L C. Partial Differential Equations. 2ed. Providence, RI: American Mathematical Society, 2010
|
3 |
Schaeffer J . The equation utt-△u=|u|p for the critical value of p. Proc Roy Soc Edinb, 1985, 101
|
4 |
Yuan H J . The Cauchy problem for a singular conservation law with measures as initial conditions. J Math Anal Appl, 1998, 225 (2): 427- 439
doi: 10.1006/jmaa.1998.6023
|
5 |
Galaktionov V A , Mitidieri E , Pohozaev S I . Classification of global and blow-up sign-changing solutions of a semilinear heat equation in the subcritical Fujita Range:decond-order diffusion. Adv Nonlinear Stud, 2016, 14 (01): 1- 29
|
6 |
Al-Ghafri K S . Soliton-type solutions for two models in mathematical physics. Waves in Random and Complex Media, 2018, 28 (2): 261- 269
doi: 10.1080/17455030.2017.1341669
|
7 |
Aoki K , Inui T , Mizutani H . Failure of scattering to standing waves for a Schrödinger equation with long-range nonlinearity on star graph. J Evol Equ, 2020
doi: 10.1007/s00028-020-00579-w
|
8 |
Kobayasi K . Uniqueness of solutions of degenerate diffusion equations with measures as initial conditions. Nonlinear Anal, 1988, 12 (10): 1053- 1060
doi: 10.1016/0362-546X(88)90100-9
|
9 |
Liu W X . Singular solutions for a convection diffusion equation with absorption. J Math Anal Appl, 1992, 163 (1): 200- 219
doi: 10.1016/0022-247X(92)90288-O
|
10 |
Phan Q H . Nonexistence results for a semilinear heat equation with bounded potentials. Nonlinear Anal, 2020, 192, 111667
doi: 10.1016/j.na.2019.111667
|
11 |
Osawa T . The Hadamard variational formula for the ground state value of -△u=λ|u|p-1u. Kodai Math J, 1992, 15 (2): 258- 278
doi: 10.2996/kmj/1138039602
|
12 |
Adams D R . On pacard's regularity for the equation -△=up. Electron J Differential Equations, 2012, 2012 (125): 1- 6
|
13 |
Villavert J . A refined approach for non-negative entire solutions of △u +|u|p-1 u=0 with subcritical Sobolev growth. Adv Nonlinear Stud, 2017, 17 (4): 691- 703
doi: 10.1515/ans-2016-6024
|
14 |
Zou H H . Symmetry of positive solutions of △u + up=0 in Rn. J Differential Equations, 1995, 120 (1): 46- 88
doi: 10.1006/jdeq.1995.1105
|
15 |
Ghergu M , Kim S H , Shahgholian H . Isolated singularities for semilinear elliptic systems with power-law nonlinearity. Analysis & PDE, 2020, 13 (3): 701- 739
|
16 |
An Y C , Liu H R , Tian L . The Dirichlet problem for a sub-elliptic equation with singular nonlinearity on the Heisenberg group. J Math Inequal, 2020, 14 (1): 65- 80
|
17 |
Kwon Y K , Sario L , Schiff J . Bounded energy-finite solutions of △u=Pu on a Riemannian manifold. Nagoya Math J, 1971, 42 (6): 95- 108
|
18 |
Li M R . Blow-up results and asymptotic behavior of the emden-fowler equation u"=|u|p*. Acta Mathematica Scientia, 2007, 27B (4): 703- 734
|
19 |
Labutin D A . Wiener regularity for large solutions of nonlinear equations. Arkiv för Matematik, 2003, 41, 307- 339
doi: 10.1007/BF02390818
|
20 |
Marcus M , Véron L . Maximal solutions of equation △u=uq in arbitrary domains. C R Acad Sci Paris Ser I Math, 2007, 344 (5): 299- 304
doi: 10.1016/j.crma.2007.01.002
|
21 |
Le-Gall J F . The Brownian snake and solutions of △u=u2 in a domain. Probab Theory Relat Fields, 1995, 102 (3): 393- 432
doi: 10.1007/BF01192468
|
22 |
Abraham R , Delmas J F . Solutions of △u=4u2 with Neumann's conditions using the Brownian snake. Probab Theory Relat Fields, 2004, 128 (4): 475- 516
doi: 10.1007/s00440-003-0302-2
|
23 |
Quaas A , Topp E . Existence and uniqueness of large solutions for a class of non-uniformly elliptic semilinear equations. J d'Analyse Math, 2018, 136 (1): 341- 355
doi: 10.1007/s11854-018-0062-7
|
24 |
Marcus M , Véron L . Maximal solutions for -△u + uq=0 in open or finely open sets. J Math Pure Appl, 2009, 91 (3): 256- 295
doi: 10.1016/j.matpur.2009.01.011
|
25 |
Kirchhoff G R. Vorlesungen Über Matematische Physik: Mechanik. Leipzig: Druck und von B G Teubner, 1876
|
26 |
Anello G . A uniqueness result for a nonlocal equation of Kirchhoff type and some related open problem. J Math Anal Appl, 2011, 373 (1): 248- 251
doi: 10.1016/j.jmaa.2010.07.019
|
27 |
Liu J , Liao J F , Tang C L . . J Math Anal Appl, 2015, 429 (2): 1153- 1172
doi: 10.1016/j.jmaa.2015.04.066
|
28 |
Yao X Z , Mu C L . Infinitely many sign-changing solutions for Kirchhoff-type equations with power nonlinearity. Electron J Differential Equations, 2016, 2016 (59): 1- 9
|
29 |
Sun Z H , Lei Y F . Infinitely many sign-changing solutions to Kirchhoff-type equations. Anal Math Phys, 2019, 9 (1): 565- 584
doi: 10.1007/s13324-018-0218-8
|
30 |
Yin G S , Liu J S . Existence and multiplicity of nontrivial solutions for a nonlocal problem. Bound Value Probl, 2015, 2015 (26): 1- 7
|
31 |
Lei C Y , Chu C M , Suo H M . Positive solutions for a nonlocal problem with singularity. Electron J Differential Equations, 2017, 2017 (85): 1- 9
|
32 |
Wang Y , Suo H M , Lei C Y . Multiple positive solutions for a nonlocal problem involving critical exponent. Electron J Differential Equations, 2017, 2017 (275): 1- 11
|
33 |
Hamdani M K , Harrabi A , Mtiri F , et al. Existence and multiplicity results for a new p(x)-Kirchhoff problem. Nonlinear Anal, 2020, 190, 111598
doi: 10.1016/j.na.2019.111598
|
34 |
Wang Y, Yang X. Infinitely many solutions for a new Kirchhoff type equation with subcritical exponent. Applicable Analysis, 2020, Article ID: 1767288
|
35 |
Li G B , Xiang C L . Nondegeneracy of positive solutions to a Kirchhoff problem with critical Sobolev growth. Appl Math Lett, 2018, 86, 270- 275
doi: 10.1016/j.aml.2018.07.010
|
36 |
Faraci F , Farkas C . On a critical Kirchhoff-type problem. Nonlinear Anal, 2020, 192, 111679
doi: 10.1016/j.na.2019.111679
|
37 |
Talenti G (Firenze) . Best constant in Sobolev inequality. Annali Di Matematica Pura Ed Applicata, 1976, 110 (01): 353- 372
doi: 10.1007/BF02418013
|
38 |
Willem M. Minimax Theorems. Boston: Birkhäuser Boston Inc, 1996
|
39 |
Boccardo L , Orsina L . Semilinear elliptic equations with singular nonlinearities. Calc Var Partial Differential Equations, 2010, 37, 363- 380
doi: 10.1007/s00526-009-0266-x
|
40 |
Sun Y J , Zhang D Z . The role of the power 3 for elliptic equations with negative exponents. Calc Var Partial Differential Equations, 2014, 49, 909- 922
doi: 10.1007/s00526-013-0604-x
|