Ground-State Solutions for Schrödinger-Maxwell Equations in the Critical Growth
Liwan Fang1(),Wennian Huang2(),Minqing Wang2()
1 School of Mathematics and Computer Science, Guangxi Science and Technology Normal University; Guangxi Laibin 546199 2 School of Mathematics and Statistics, Guangxi Normal University, Guangxi Guilin 541004
the Science Research Fund of Guangxi Normal University(2014ZD001);the Natural Science Foundation of Guangxi(2015GXNSFBA139018);the Postgraduate Education Innovation Plan Project of Guangxi in 2017(XYCZ2017074)
Liwan Fang,Wennian Huang,Minqing Wang. Ground-State Solutions for Schrödinger-Maxwell Equations in the Critical Growth[J]. Acta mathematica scientia,Series A, 2019, 39(3): 475-483.
Zhang J . On the Schrödinger-Poisson equations with a general nonlinearity in the critical growth. Nonlinear Analysis: Theory, Methods and Applications, 2012, 75: 6391- 6401
doi: 10.1016/j.na.2012.07.008
2
Liu Z S , Guo S J . On ground state solutions for the Schrödinger-Poisson equations with critical growth. Journal of Mathematical Analysis and Applications, 2014, 412: 435- 448
doi: 10.1016/j.jmaa.2013.10.066
3
Yang M H , Han Z Q . Existence and multiplicity results for the nonlinear Schrödinger-Poisson systems. Nonlinear Analysis: Real World Applications, 2012, 13: 1093- 1101
doi: 10.1016/j.nonrwa.2011.07.008
4
Benci V , Fortunato D . An eigenvalue problem for the Schrödinger-Maxwell equations. Topological Methods Nonlinear Analysis, 1998, 11: 283- 293
doi: 10.12775/TMNA.1998.019
5
Huang W N , Tang X H . Ground-state solutions for asymptotically cubic Schrödinger-Maxwell equations. Mediterranean Journal of Mathematics, 2016, 13: 3469- 3481
doi: 10.1007/s00009-016-0697-5
6
Tang X H . Non-Nehari manifold method for asymptotically linear Schrödinger equation. Journal of the Australian Mathematical Society, 2015, 98: 104- 116
doi: 10.1017/S144678871400041X
7
Tang X H . Non-Nehari manifold method for superlinear Schrödinger equation. Taiwanese Jounal of Mathematics, 2014, 18: 1957- 1979
doi: 10.11650/tjm.18.2014.3541
8
Kikuchi H . On the existence of solution for elliptic system related to the Maxwell-Schrödinger equations. Nonlinear Analysis: Theory, Methods and Applications, 2007, 67: 1445- 1456
doi: 10.1016/j.na.2006.07.029
9
Bartsch T, Wang Z Q, Willem M. The Dirichlet problem for superlinear elliptic equations//Mawhin J, et al. Stationary Partial Differential Equations. Amsterdam: Elsevier, 2005, 2: 1-55
10
Azzollini A , D'Avenia P . On a system involving a critically growing nonlinearity. Journal of Mathematical Analysis and Applications, 2012, 387: 433- 438
doi: 10.1016/j.jmaa.2011.09.012
11
Zhao L G , Zhao F K . On the existence of solutions for the Schrödinger-oisson equations. Journal of Mathematical Analysis and Applications, 2008, 346: 155- 169
doi: 10.1016/j.jmaa.2008.04.053
12
Ruiz D . The Schrödinger-Possion equation under the effect of a nonlinear local term. Journal of functional analysis, 2006, 237: 655- 674
doi: 10.1016/j.jfa.2006.04.005
13
Yosida K . Functional Analysis. Berlin, Heidelberg: Springer, 1995
14
Cerami G , Vaira G . Positive solutions for some non-autonomous Schrödinger-Poisson systems. Journal of Differential Equations, 2010, 248: 521- 543
doi: 10.1016/j.jde.2009.06.017
15
Berestycki H , Lions P L . Nonlinear scalar field equations. I. existence of a ground state. Archive for Rational Mechanics and Analysis, 1983, 82: 313- 345
doi: 10.1007/BF00250555
16
Willem M . Minimax Theorems. New York: Springer, 1997
17
Adams R A , Fournier J F . Sobolev Spaces. New York: Academic Press, 2003