1 |
Alouges F , Soyeur A . On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness. Nonlinear Anal, 1992, 18 (11): 1071- 1084
doi: 10.1016/0362-546X(92)90196-L
|
2 |
Bejenaru I , Ionescu A D , Kenig C E , et al. Global Schrödinger maps in dimensions $d \ge 2$: small data in the critical Sobolev spaces. Ann of Math, 2011, 173 (2/3): 1443- 1506
|
3 |
Bejenaru I , Ionescu A D , Kenig C E , et al. Equivariant Schrödinger maps in two spatial dimensions: the $\mathbb{H}^2$ target. Kyoto J Math, 2016, 56 (2): 283- 323
doi: 10.1215/21562261-3478889
|
4 |
Chang N H , Shatah J , Uhlenbeck K . Schrödinger maps. Comm Pure Appl Math, 2000, 53 (5): 590- 602
doi: 10.1002/(ISSN)1097-0312
|
5 |
Ding Q . Explicit blow-up solutions to the Schrödinger maps from $R^2$ to the hyperbolic 2-space $\mathcal{H}^2$. J Math Phys, 2009, 50 (10): 103507
doi: 10.1063/1.3218848
|
6 |
Ding S J , Wang C Y . Finite time singularity of the Landau-Lifshitz-Gilbert equation. Int Math Res Not, 2007
doi: 10.1093/imrn/rnm012
|
7 |
Gutiérrez S , de Laire A . Self-similar solutions of the one-dimensional Landau-Lifshitz-Gilbert equation. Nonlinearity, 2015, 28 (5): 1307- 1350
doi: 10.1088/0951-7715/28/5/1307
|
8 |
Guo B L , Yang G S . Some exact nontrivial global solutions with values in unit sphere for two-dimensional Landau-Lifshitz equations. J Math Phys, 2001, 42 (11): 5223- 5227
doi: 10.1063/1.1402955
|
9 |
Hasimoto H. . A soliton on a vortex filament. J Fluid Mech, 1972, 51 (3): 477- 485
|
10 |
Hayashi N , Hirata H . Global existence of small solutions to nonlinear Schrödinger equations. Nonlinear Anal, 1998, 31 (5/6): 671- 685
|
11 |
Liu X G . Concentration sets of the Landau-Lifshitz system and quasi-mean curvature flows. Calc Var Partial Differential Equations, 2006, 27 (4): 493- 525
doi: 10.1007/s00526-006-0038-9
|
12 |
Landau L D , Lifshitz E M . On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys Z Sowjet, 1935, 8: 153- 169
|
13 |
Lin J Y , Lai B S , Wang C Y . Global well-posedness of the Landau-Lifshitz-Gilbert equation for initial data in Morrey spaces. Calc Var Partial Differential Equations, 2015, 54 (1): 665- 692
|
14 |
Li Z X , Shen Y T . Nonsmooth critical point theorems and its applications to quasilinear Schrödinger equations. Acta Math Sci, 2016, 36B (1): 73- 86
|
15 |
Li Q Q , Wu X . Existence of nontrivial solutions for generalized quasilinear Schrödinger equations with critical or supercritical growths. Acta Math Sci, 2017, 37B (6): 1870- 1880
|
16 |
Melcher C . Global solvability of the Cauchy problem for the Landau-Lifshitz-Gilbert equation in higher dimensions. Indiana Univ Math J, 2012, 61 (3): 1175- 1200
doi: 10.1512/iumj.2012.61.4717
|
17 |
Merle F , Raphaël P , Radnianski I . Blowup dynamics for smooth data equivariant solutions to the critical Schrödinger map problem. Invent Math, 2013, 193 (2): 249- 365
doi: 10.1007/s00222-012-0427-y
|
18 |
Perelman G . Blow up dynamics for equivariant critical Schrödinger maps. Comm Math Phys, 2014, 330 (1): 69- 105
|
19 |
Salazar M , Pérez Alcázar G A . Landau-Lifshitz-Gilbert equation with symmetric coefficients of the dissipative function Ⅱ. Physica A, 2016, 453: 144- 149
doi: 10.1016/j.physa.2016.02.058
|
20 |
Van Den Berg J B , Williams J F . (In-)stability of singular equivariant solutions to the Landau-Lifshitz-Gilbert equation. Eur J Applied Math, 2013, 24 (6): 921- 948
doi: 10.1017/S0956792513000247
|
21 |
Wang B X . The limit behavior of solutions for the Cauchy problem of the complex Ginzburg-Landau equation. Comm Pure Appl Math, 2002, 55 (4): 481- 508
doi: 10.1002/(ISSN)1097-0312
|
22 |
Wang B X . Globally well and ill posedness for non-elliptic derivative Schrödinger equations with small rough data. J Funct Anal, 2013, 265 (12): 3009- 3052
doi: 10.1016/j.jfa.2013.08.009
|
23 |
Yang G S , Guo B L . Some exact solutions to multidimensional Landau-Lifshitz equation with uprush external field and anisotropy field. Nonlinear Anal, 2009, 71 (9): 3999- 4006
doi: 10.1016/j.na.2009.02.070
|
24 |
Zhong P H , Wang S , Chen S T . Some periodic and blow-up solutions for Landau-Lifshitz equation. Mod Phys Lett A, 2011, 26 (32): 2437- 2452
doi: 10.1142/S0217732311036644
|
25 |
Zhong P H , Wang S , Zeng M . Some exact blowup solutions to multidimensional Schrödinger map equation on hyperbolic space and cone. Mod Phys Lett A, 2013, 28 (10): 1350043
doi: 10.1142/S0217732313500430
|
26 |
Zhong P H , Yang G S . Finite time blowup of multidimensional inhomogeneous isotropic Landau-Lifshitz equation on a hyperbolic space. Comput Math Appl, 2017, 73 (3): 433- 449
doi: 10.1016/j.camwa.2016.11.038
|