数学物理学报 ›› 2019, Vol. 39 ›› Issue (3): 484-500.

• 论文 • 上一篇    下一篇

半线性Klein-Gordon方程的高频周期解

童常青1,郑静2,*()   

  1. 1 杭州电子科技大学理学院数学系 杭州 310018
    2 杭州电子科技大学经济学院统计系 杭州 310018
  • 收稿日期:2017-01-09 出版日期:2019-06-26 发布日期:2019-06-27
  • 通讯作者: 郑静 E-mail:tongchangqing@hdu.edu.cn
  • 基金资助:
    国家社科基金(17BTJ023)

Periodic Solutions of a Semi-Linear Klein-Gordon Equations with High Frequencies

Changqing Tong1,Jing Zheng2,*()   

  1. 1 Department of Mathematics, College of Science, Hangzhou Dianzi University, Hangzhou 310018
    2 Department of Statistics, College of Economy, Hangzhou Dianzi University, Hangzhou 310018
  • Received:2017-01-09 Online:2019-06-26 Published:2019-06-27
  • Contact: Jing Zheng E-mail:tongchangqing@hdu.edu.cn
  • Supported by:
    the The National Social Science Fund of China(17BTJ023)

摘要:

该文对一些半线性Klein-Gordon方程,证明了高频周期解的存在性.对非线性项只假设它的正则性为Ck,且没有非线性项非常小的假设.利用Nash-Moser迭代,在Sobolev空间中得到了周期解.

关键词: Klein-Gordon方程, 周期解, Nash-Moser迭代

Abstract:

In this paper, we prove the existence of periodic solutions with high frequencies of some semi-linear Klein-Gordon equations. We only assume the nonlinearities are Ck regular and without smallness. Using Nash-Moser iteration, we obtained some periodic solutions in Sobolev space.

Key words: Klein-Gordon equation, Periodic solutions, Nash-Moser Iteration

中图分类号: 

  • O175.27