数学物理学报 ›› 2019, Vol. 39 ›› Issue (2): 372-385.

• 论文 • 上一篇    下一篇

中心格式在Saint-Venant方程组上的应用研究

董建()   

  1. 武汉大学数学与统计学院 武汉 430072
  • 收稿日期:2017-09-14 出版日期:2019-04-26 发布日期:2019-05-05
  • 作者简介:董建, E-mail:j.dong@whu.edu.cn
  • 基金资助:
    国家自然科学基金(11001211);国家自然科学基金(11371023);国家重大研发计划(2016YFC0402207)

Research on the Application of Central Scheme in Saint-Venant System

Jian Dong()   

  1. School of Mathematics and Statistics, Wuhan University, Wuhan 430072
  • Received:2017-09-14 Online:2019-04-26 Published:2019-05-05
  • Supported by:
    国家自然科学基金(11001211);国家自然科学基金(11371023);国家重大研发计划(2016YFC0402207)

摘要:

浅水波方程组对于其数值格式有较高的要求.在实际应用中作者更关心在稳态解附近的行为,特别是当计算区域出现干湿界面的时候,不但要求格式具有和谐性,而且需要保持水深恒为非负,同时又要求数值格式具有较高的精度.设计同时满足这些性质的数值格式具有一定的难度.论文的核心是总结研究了受关注的求解浅水波方程组的中心格式:KP格式,BCKN格式和T格式的各自优势以及不足之处.该文通过求解一维问题来展示各自格式在一些算例上的应用.

关键词: Saint-Venant方程组, 有限体积法, 和谐性, 保正性

Abstract:

Shallow water wave equations have high requirements for their numerical schemes. In practical applications, we are more concerned with the behavior in the vicinity of the steady-state solution, especially when the dry and wet fronts occur in the computation area. In this case, not only the scheme is required to be well-balanced, but also the water depth needs to be kept non-negative, at the same time, the scheme is required with high resolution. Therefore, it is difficult to design a numerical scheme that is both well-balanced and positivity preserving. The core of the dissertation is to summarize and study the central schemes of the concerned shallow water wave equations:the KP scheme, the BCKN scheme and the T scheme. We investigate their advantages and disadvantages. We use the one-dimensional shallow water wave equations to show the applications of the each scheme to some examples.

Key words: Saint-Venant equations, Finite volume method, Well-Balanced, Positivity preserving

中图分类号: 

  • O241.82