数学物理学报 ›› 2019, Vol. 39 ›› Issue (2): 358-371.

• 论文 • 上一篇    下一篇

密度制约且具有时滞捕食-被捕食模型的Hopf分支

李海银()   

  1. 河南财经政法大学数学与信息科学学院 郑州 450046
  • 收稿日期:2017-08-09 出版日期:2019-04-26 发布日期:2019-05-05
  • 作者简介:李海银, E-mail: lihaiyin2013@163.com
  • 基金资助:
    国家自然科学基金(61640315);河南省高等学校重点科研项目资助计划(18A110012)

Hopf Bifurcation of Delayed Density-Dependent Predator-Prey Model

Haiyin Li()   

  1. Department of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou 450046
  • Received:2017-08-09 Online:2019-04-26 Published:2019-05-05
  • Supported by:
    the NSFC(61640315);the Key Scientific Research Project of Henan Higher Education Institutions(18A110012)

摘要:

捕食者和被捕食者都具有密度制约的捕食-被捕食模型更符合实际的生物环境,也更有一定的现实意义,所以该文考虑了密度制约且具有Beddington-DeAngelis功能反应函数的时滞捕食-被捕食系统.首先,给出系统的稳定性变换为后面讨论分支周期解做好准备.其次,由中心流形定理和规范型理论,得到Hopf分支关于分支方向、稳定性以及周期情况的特性指标.最后,在数值模拟这部分对系统稳定性变换和系统的Hopf分支进行了验证.

关键词: 捕食者密度制约, 捕食-被捕食系统, 时滞, Hopf分支

Abstract:

In this paper, we investigate stability and Hopf bifurcation of a delayed density-dependent predator-prey system with Beddington-DeAngelis functional response, where not only the prey density dependence but also the predator density dependence are considered such that the studied predator-prey system conforms to the realistically biological environment. Firstly, stability transformation of the system was given to prepare for discussion of bifurcating periodic solution. Secondly, we discussed properties of Hopf bifurcation about bifurcating direction, stability and period by center manifold theorem and normal form theory. Finally, an example with numerical simulations is given to illustrate stability transformation and Hopf bifurcation of the system.

Key words: Density dependent predator, Prey-predator system, Time delay, Hopf bifurcation

中图分类号: 

  • O193