1 |
Haine L , Iliev P . Commutative. Lax pairs, symmetries and an Adilic flag manifold. Int Math Res Not, 2000, 6: 281- 323
|
2 |
Kupershimidt B A . Discrete Lax equations and difference calculus. Astérisque, 1985, 123: 1- 212
|
3 |
Li M H , He J S . The Wronskian solution of the constrained discrete Kadomtsev-Petviashvili hierarchy. Commun Nonlin Sci Numer Simulat, 2016, 34: 210- 223
doi: 10.1016/j.cnsns.2015.10.021
|
4 |
Liu S W , Ma W X . The string aquation and the τ-function witt constraints for the discrete Kadomtsev-Petviashvili hierarchy. J Math Phys, 2013, 54: 103513
doi: 10.1063/1.4826357
|
5 |
Liu S W , Cheng Y , He J S . The determinant representtion of the gauge transformation for the discrete KP hierarchy. Sci China Math, 2010, 53: 1195- 1206
doi: 10.1007/s11425-010-0067-x
|
6 |
Li M H , Cheng J P , He J S . The gauge transformation of the constrained semi-discrete KP hierarchy. Mod Phys Lett B, 2013, 27: 1350043
|
7 |
Cheng J P , Li M H , He J S . The Virasoro action on the tau function for the constrained discrete KP hierarchy. J Nonlin Math Phys, 2013, 20: 529- 538
doi: 10.1080/14029251.2013.868266
|
8 |
Li M H , Cheng J P , He J S . The compatibility of additional symmetry and geuge transformations for the constrained discrete Kadomtsev-Petviashvili hierarchy. J Nonlin Math Phys, 2015, 22: 17- 31
doi: 10.1080/14029251.2015.996436
|
9 |
Liu S W , Cheng Y . Sato Bäcklund transformation, additional symmetries and ASvM formula for the discrete KP hierarchy. J Phys A:Math Theor, 2010, 43: 135202
doi: 10.1088/1751-8113/43/13/135202
|
10 |
Li M H , Tian K L , He J S , et al. Virasoro type algebraic structure hidden in the constrained discrete KP hierarchy. J Math Phys, 2013, 54: 043512
doi: 10.1063/1.4801857
|
11 |
Oevel W. Darboux transformations for integrable lattice systems//Alfinito E, Boiti M, Martina L, et al. Nonlinear Physics: Theory and Experiment. Singapore: World Scientific, 1996: 233-240
|
12 |
Tamizhmani K M , Kanaga Vel S . Gauge equivalence and ι-reductions of the differential-difference KP equation. Chaos Soliton Fract, 2000, 11: 137- 143
doi: 10.1016/S0960-0779(98)00277-X
|
13 |
Li M H , Cheng J P , He J S . The successive application of the gauge transformation for the modified semidiscrete KP hierarchy. Z Naturforsch A, 2016, 71: 1093- 1098
|
14 |
Huang R , Song T , Li C Z . Gauge transformations of constrained discrete modified KP systems with self-consistent sources. Inter J Geom Meth Mod Phys, 2017, 14: 1750052
doi: 10.1142/S0219887817500529
|
15 |
Zhang D J , Wu H , Deng S F , et al. General formulae for two pseudo-differential operaters. Commun Theor Phys, 2008, 49: 1393- 1396
doi: 10.1088/0253-6102/49/6/07
|
16 |
Zhang D J , Chen D Y . Addendum to "some general formulas in the Sato theory". J Phys Soc Jpn, 2003, 72: 2130- 2131
doi: 10.1143/JPSJ.72.2130
|
17 |
Zhang D J , Chen D Y . Some general formulas in the Sato theory. J Phys Soc Jpn, 2003, 72: 448- 449
doi: 10.1143/JPSJ.72.448
|
18 |
Cheng J P , He J S , Wang L H . A general formula of flow equations for Harry-Dym hierarchy. Commun Theor Phys, 2011, 55: 193- 198
doi: 10.1088/0253-6102/55/2/01
|