[1] Rubinstein I. Electro-Diffusion of Ions. Philadelphia:SIAM, 1990 [2] Balbuena P B, Wang Y. Lithium-ion Batteries, Solid-electrolyte Interphase. London:Imperial College Press, 2004 [3] Jerome J W. The steady boundary value problem for charged incompressible fluids:PNP/Navier-Stokes systems. Nonlinear Anal, 2011, 74:7486-7498 [4] Ryham R J, Liu C, Zikatanov L. Mathematical models for the deformation of electrolyte droplets. Discrete Contin Dyn Syst Ser B, 2007, 8(3):649-661 [5] Schmuck M. Analysis of the Navier-Stokes-Nernst-Planck-Poisson system. Math Models Methods Appl Sci, 2009, 19(6):993-1015 [6] Jerome J W. Analytical approaches to charge transport in a moving medium. Tran Theo Stat Phys, 2002, 31:333-366 [7] Jerome J W, Sacco R. Global weak solutions for an incompressible charged fluid with multi-scale couplings:Initial-boundary-value problem. Nonlinear Anal, 2009, 71:2487-2497 [8] Ryham R J. Existence, uniqueness, regularity and long-term behavior for dissipative systems modeling electrohydrodynamics. 2009, arXiv:0910.4973v1 [9] Zhao J, Deng C, Cui S. Global well-posedness of a dissipative system arising in electrohydrodynamics in negative-order Besov spaces. J Math Physics, 2010, 51:093101 [10] Zhao J, Liu Q. Well-posedness and decay for the dissipative system modeling electro-hydrodynamics in negative Besov spaces. J Differential Equations, 2017, 263:1293-1322 [11] Zhao J, Zhang T, Liu Q. Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space. Discrete Contin Dyn Syst Ser A, 2015, 35(1):555-582 [12] Zhang Z, Yin Z. Global well-posedness for the Navier-Stokes-Nernst-Planck-Poisson system in dimension two. Applied Mathematics Letters, 2015, 40:102-106 [13] Leray J. Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math, 1934, 63:193-248 [14] Serrin J. On the interior regularity of weak solutions of the Navier-Stokes equations. Arch Rational Mech Anal, 1962, 9:187-195 [15] Escauriaza L, Seregin G, Šverák V. L3,∞-solutions of Navier-Stokes equations and backward uniqueness. Uspekhi Mat Nauk, 2003, 58:3-44 [16] Beirão da Veiga H. A new regularity class for the Navier-Stokes equations in Rn. Chin Ann Math Ser B, 1995, 16:407-412 [17] Fan J, Jiang S, Nakamura G, Zhou Y. Logarithmically improved regularity criteria for the Navier-Stokes and MHD equations. J Math Fluid Mech, 2011, 13(4):557-571 [18] Kozono H, Ogawa T, Taniuchi Y. The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math Z, 2002, 242:251-278 [19] Kozono H, Taniuchi Y. Bilinear estimates in BMO and the Navier-Stokes equations. Math Z, 2000, 235:173-194 [20] Montgomery-Smith S. Conditions implying regularity of the three dimensional Navier-Stokes equation. Appl Math, 2005, 50:451-464 [21] 张祖锦. 三维Navier-Stokes方程组关于速度梯度两个分量的正则性准则的一个改进. 数学物理学报,2014, 34A(5):1327-1335 Zhang Z J. An improved regularity criterion for the 3D Navier-Stokes equations in terms of two entries of the velocity gradient. Acta Math Sci, 2014, 34A(5):1327-1335 [22] Zhou Y, Lei Z. Logarithmically improved Serrin's criteria for Navier-Stokes equations. Comm Pure Appl Anal, 2008, 12(6):2715-2719 [23] Chae D, Lee J. Regularity criterion in terms if pressure for the Navier-Stokes equations. Nonlinear Anal, 2001, 46:727-735 [24] Zhou Y. On regularity criteria in terms of pressure for the Navier-Stokes equations in R3. Proc Amer Math Soc, 2005, 134:149-156 [25] Struwe M. On a Serrin-type regularity criterion for the Navier-Stokes equations in terms of the pressure. J Math Fluid Mech, 2007, 9:235-242 [26] Berselli L C, Galdi G P. Regularity criteria involving the pressure for the weak solutions of the NavierStokes equations. Proc Amer Math Soc, 2002, 130:3585-3595 [27] Chen Q, Zhang Z. Regularity criterion via the pressure on weak solutions to the 3D Navier-Stokes equations. Proc Amer Math Soc, 2007, 135(6):1829-1837 [28] Fan J, Jiang S, Ni G. On regularity criteria for the n-dimensional Navier-Stokes equations in terms of the pressure. J Differential Equations, 2008, 244:2936-2979 [29] Fan J, Ozawa T. Regularity criterion for weak solutions to the Navier-Stokes equations in terms of the gradient of the pressure. J Inequ Appl, 2008, 2008:412678 [30] Zhou Y. On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in RN. Z Angew Math Phys, 2006, 57:384-392 [31] Guo Z, Gala S. Remarks on logarithmical regularity criteria for the Navier-Stokes equations. J Math Physics, 2011, 52:063503 [32] Fan J, Gao H. Uniqueness of weak solutions to a nonlinear hyperbolic system in electrohydrodynamics. Nonlinear Anal, 2009, 70:2382-2386 [33] Fan J, Li F, Nakamura G. Regularity criteria for a mathematical model for the deformation of electrolyte droplets. Applied Mathematics Letters, 2013, 26:494-499 [34] Fan J, Nakamura G, Zhou Y. On the Cauchy problem for a model of electro-kinetic fluid. Applied Mathematics Letters, 2012, 25:33-37 [35] Zhao J, Bai M. Blow-up criteria for the three dimensional nonlinear dissipative system modeling electrohydrodynamics. Nonlinear Analysis:Real World Applications, 2016, 31:210-226 [36] Kato T, Ponce G. Commutator estimates and the Euler and Navier-Stokes equations. Comm Pure Appl Math, 1988, 41:891-907 [37] Meyer Y, Gerard P, Oru F. Inégalités de Sobolev Précisées//Séminaire Équations aux Dérivées Partielles. Paris:Séminaire de l'Ecole Polytechnique, 1996-1997, exposé No. IV:1-8 |