[1] Bloom F. Asymptotic behavior of solutions to the damped nonlinear equation (∂2)/(∂t2)u(x,t)+r(∂)/(∂t)u(x,t)-(∂)/(∂x)σ((∂)/(∂x)u(x,t))=0. J Math Anal Appl, 1982, 87:551-559
[2] Yang Z J. Existence and nonexistence of global solutions to a generalized modification of the improved Boussinesq equation. Math Meth Appl Sci, 1988, 21:1467-1477
[3] Wazwaz A M. Gaussian solitary waves for the logarithmic Boussinesq equation and the logarithmic regularized Boussinesq equation. Ocean Engineering, 2015, 94:111-115
[4] Liu Y. Decay and scattering of small solutions of a generalized Boussinesq equation. J Funct Anal, 1997, 147:51-68
[5] Lin Q, Wu Y H, Loxton R. On the Cauchy problem for a generalized Boussinesq equation. J Math Anal Appl, 2009, 353:186-195
[6] Bona J, Sachs R. Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation. Comm Math Phys, 1988, 118:15-29
[7] Yang Z J. Existence and nonexistence of global solutions to a generalized modification of the improved Boussinesq equation. Math Meth Appl Sci, 1998, 21:1467-1477
[8] Chen G W, Zhang H W. Initial boundary value problem for a system of generalized IMBq equation. Math Meth Appl Sci, 2004, 27:497-518
[9] Chen G W, Wang Y P, Wang S B. Initial boundary value problem of the generalized cubic double dispersion equation. J Math Anal Appl, 2004, 299:563-577
[10] You Y C. Nonlinear exponential stabilization of damped Boussinesq equation//Bensoussa A, Lions J L. Analysis and Optimization of Systems. New York:Springer, 1990:642-651
[11] Varlamov V V. On the initial-boundary value for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 1998, 4(3):431-444
[12] Lai S Y, Wu Y H, Xu Y. The global solution of an initial boundary value problem for the damped Boussinesq equation. Commun Pure Appl Anal, 2004, 3(2):319-328
[13] Xue R Y. The initial boundary value problem for the goog Boussinesq equation on the bounded domain. J Math Anal Appl, 2008, 343:975-995
[14] Liu Y C, Xu R Z. Potential well method for initial boundary value problem of the generalized double dispersion equations. Commun Pure Appl Anal, 2008, 7:63-81
[15] Li K, Fu S H. Asymptotic behavior for the damped Boussinesq equation with critical nonlinearity. Applied Mathematics Letters, 2014, 30:44-50
[16] Yang Z J. Longtime dynamics of the damped Boussinesq equation. J Math Anal Appl, 2013, 399:180-190
[17] Zhuang W, Yang G T. Propagation of solitary waves in the nonlinear rods. Applied Mathematics and Mechanics, 1986,7:571-581
[18] Zhang S Y, Zhuang W. Strain solitary waves in the nonlinear elastic rods. Acta Mechanica sinica, 1988, 20:58-66
[19] Chen G W, Lu B. The initial-boundary value problems for a class of nonlinear wave equations with damping term. J Math Anal Appl, 2009, 351:1-15
[20] Xu R Z, Wang S, Yang Y B, Din Y H. Initial boundary value problem for a class of fourth-order wave equation with viscous damping term. Applicable Analysis, 2013, 92(7):1403-1416
[21] 张宏伟, 陈国旺. 一类非线性四阶波动方程的位势井方法. 数学物理学报, 2003, 23A(6):758-768Zhang H W, Chen G W. Potential well method for a class of nonlinear wave equations of fourth-order. Acta Math Sci, 2003, 23A(6):758-768
[22] 杨志坚, 陈国旺. 具有阻尼项的非线性波动方程的初值问题. 应用数学学报, 2000, 23:45-54Yang Z J, Chen G W. Initial value problem for a nonlinear wave equation with damping term. Acta Math Appl Sci, 2000, 23:45-54
[23] Chen G, Yang Z J. Existence and non-existence of global solutions for a class of nonlinear wave equations. Math Meth Appl Sci, 2000, 23:615-631
[24] Yang Z J. Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term. J Differ Equas, 2003, 187:520-540
[25] Liu Y C, Xu R Z. Fourth order wave equations with nonlinear strain and source terms. J Math Anal Appl, 2007, 331:585-607
[26] Liu Y C, Xu R Z. A class of fourth order wave equations with dissipative and nonlinear strain terms. J Differ Equas, 2008, 244:200-228
[27] Yang Z J. Cauchy problem for a class of nonlinear dispersive wave equations arising in elasto-plastic flow. J Math Anal Appl, 2006, 313:197-217
[28] Zhang H W, Hu Q Y. Global existence and nonexistence of solution for Cauchy problem of two-dimensional generalized Boussinesq equation. J Math Anal Appl, 2015, 422:1116-1130
[29] Kutev N, Kolkovska N, Dimova M. Global existence of Cauchy problem for Boussinesq equation with combined power-type nonlinearities. J Math Anal Appl, 2014, 410:427-444
[30] Xu R Z. Cauchy problem for generalized Boussinesq equation with combined power-type nonlinearities. Math Meth Appl Sci, 2011, 34:2318-2328
[31] Chen H, Luo P, Liu G W. Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity. J Math Anal Appl, 2015, 422:84-98
[32] Chen H, Tian S Y. Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity. J Differ Equas, 2015, 258:4424-4442
[33] Cazenave T, Haraux A. Equations devolution avec non-linearite logarithmique. Ann Fac Sci Toulouse Math, 1980, 2(1):21-51
[34] Gorka P. Logarithmic Klein-Gordon equation. Acta Phys Polon B, 2009, 40(1):59-66
[35] Lieb E, Loss M. Analysis (second ed). Providence:Amer Math Soc, 2001
[36] Cotsiolis A, Tavoularis N K. On logarithmic Sobolev inequalities for higher order fractional derivatives. C R Acad Sci Paris, 2005, 340:205-208
[37] Payne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations. Israel J Math, 1975, 22:273-303
[38] Liu Y C. On potential wells and applications to semilinear hyperbolic equations and parabolic equations. Nonlinear Analysis, 2006, 64:2665-2687
[39] Haraux A, Zuazua E. Decay estimates for some semilinear damped hyperbolic problems. Arch Ration Mech Anal, 1988, 150:191-206
[40] Zuazua E. Exponential decay for the semilinear wave equation with locally distributed damping. Comm Partial Differ Equas, 1990, 15(2):205-235
[41] Benaissa A, Messaoudi S. Exponential decay of solutions of a nonlinearly damped wave equation. Nonlinear Differential Equations Applications, 2005, 12(4):391-399
[42] Gerbi S, Said-Houari B. Exponential decay for solutions to semilinear damped wave equation. Discrete and Continuous Dynamical Systems, 2012, 5(3):559-566 |