数学物理学报 ›› 2016, Vol. 36 ›› Issue (6): 1137-1144.

• 论文 • 上一篇    下一篇

具有临界增长及Hardy项的半线性椭圆方程多解的存在性

袁海华1, 张正杰1, 徐国进2   

  1. 1. 华中师范大学数学与统计学学院 武汉 430079;
    2. 湖北工程学院数学与统计学院 湖北孝感 432000
  • 收稿日期:2016-03-23 修回日期:2016-10-18 出版日期:2016-12-26 发布日期:2016-12-26
  • 通讯作者: 张正杰 E-mail:zjz@mail.ccnu.edu.cn
  • 基金资助:

    国家自然科学基金(11371159)和教育部高校长江创新团队(IRT13066)资助

Multiple Solutions for Semilinear Elliptic Equations with Critical Exponents and Hardy Potential

Yuan Haihua1, Zhang Zhengjie1, Xu Guojin2   

  1. 1. School of Mathematics and Statistics, Central China Normal University, Wuhan 430079;
    2. School of Mathematics and Statistics, Hubei Engineering University, Hubei Xiaogan 432000
  • Received:2016-03-23 Revised:2016-10-18 Online:2016-12-26 Published:2016-12-26
  • Supported by:

    Supported by the NSFC (11371159) and the Yangtze River Innovation Team of the Ministry Education in Colleges and Universities (IRT13066)

摘要:

该文研究如下问题
-△u+(u)/(|x|2)=|u|2*-2u+gx),x∈RN,(0.1)
ux)→0(|x|→∞),uD1,2(RN
多解的存在性,这里gx)≥0,gx)≠0,gx)∈L(2N)/(N+2)(RN).证明了:存在常数C(适当小),如果‖gL(2N)/(N+2)(RN)}C,则上述问题至少有两个解存在.

关键词: 半线性, Hardy项, 山路引理

Abstract:

In this paper, we consider the following problem
-△u+(u)/(|x|2)=|u|2*-2u+g(x),x∈RN,
u(x)→0(|x|→∞),uD1,2(RN)
where g(x)≥0,g(x)≠0, 且g(x)∈L(2N)/(N+2)(RN). We can prove that there exists a constant C, which is small enough,such that ‖gL(2N)/(N+2)(RN)C, then there are at least two solutions for the above problem.

Key words: Semi-linear, Hardy potential, Mountain pass lemma

中图分类号: 

  • O175.23