数学物理学报 ›› 2016, Vol. 36 ›› Issue (6): 1117-1123.

• 论文 • 上一篇    下一篇

一类Schrödinger-Hartree方程爆破解的门槛条件

杨凌燕, 李晓光, 陈樱   

  1. 四川师范大学数学与软件科学学院可视化计算与虚拟现实四川省重点实验室 成都 610068
  • 收稿日期:2016-03-25 修回日期:2016-09-20 出版日期:2016-12-26 发布日期:2016-12-26
  • 作者简介:杨凌燕,kafuka15@126.com
  • 基金资助:

    国家自然科学基金(11371267)和四川省杰出青年基金(2012JQ0011)资助

A Sharp Threshold of Blow-Up of a Class of Schrödinger-Hartree Equations

Yang Lingyan, Li Xiaoguang, Chen Ying   

  1. School of Mathematics and VC & VR Province Key Lab, Sichuan Normal University, Chengdu 610068
  • Received:2016-03-25 Revised:2016-09-20 Online:2016-12-26 Published:2016-12-26
  • Supported by:

    Supported by the NSFC (11371267) and the National Science Foundation for Distinguished Young Scholars of Sichuan Province (2012JQ0011)

摘要:

该文在R3中研究如下Schrödinger-Hartree方程
i{tψ+△ψ=-(|x|-1*|ψ|α)|ψ|α-2}ψt>0,x∈R3α≥2.(P)
利用Gagliardo-Nirenberg与方程(P)的质量守恒律,能量守恒律建立方程的发展不变流.以此为基础在(7)/(3)≤α < 5时,得到其Cauchy问题的爆破解和整体解的门槛条件.

关键词: Schrö, dinger-Hartree方程, 不变流, 爆破解, 门槛条件

Abstract:

In this paper, the Schrödinger-Hartree equation
itψ+△ψ=-(|x|-1*|ψ|α)|ψ|α-2}ψ, t>0,x∈R3,α≥2 (P)
is considered in R3. We establish invariant evolution flows of the equation by Gagliardo-Nirenberg inequality, mass conservation and energy conservation of the equation (P). When (7)/(3)≤α < 5, a sharp threshold of global existence and blow-up of the Cauthy problem is derived.

Key words: Schrödinger-Hartree equation, Invariant evolution flows, Blow-up solution, Sharp threshold

中图分类号: 

  • O175.23