[1] Alama S, Li Y Y. On multibump bound states for certain semilinear elliptic equations. Indiana Univ Math J, 1992, 41:983-1026
[2] Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14:349-381
[3] Bartsch T, Ding Y H. On a nonlinear Schrödinger equation with periodic potential. Math Ann, 1999, 313:15-37
[4] Bartsch T, Ding Y H. Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math Nachrichten, 2006, 279:1267-1288
[5] Buffoni B, Jeanjean L, Stuart C A. Existence of nontrivial solutions to a strongly indefinite semilinear equation. Proc Amer Math Soc, 1993, 119:179-186
[6] Costa D G, Tehrani H. On a class of asymptotically linear elliptic problems in R^N. J Differential Equations, 2001, 173:470-494
[7] Coti-Zelati V, Rabinowitz P. Homoclinic type solutions for a semilinear elliptic PDE on R^N. Comm Pure Appl Math, 1992, 46:1217-1269
[8] Ding Y H. Varitional Methods for Strongly Indefinite Problems. Singapore:World Scientific, 2007
[9] Ding Y H, Li S J. Some existence results of solutions for the semilinear elliptic equations on R^N. J Differential Equations, 1995, 119:401-425
[10] Ding Y H, Lee C. Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms. J Differential Equations, 2006, 222:137-163
[11] Ding Y H, Luan S X. Multiple solutions for a class of nonlinear Schrödinger equations. J Differential Equations, 2004, 207:423-457
[12] Ding Y H, Szulkin A. Bound states for semilinear Schrödinger equations with sign-changing potential. Calc Var Partial Differential Equations, 2007, 29(3):397-419
[13] Edmunds D E, Evans W D. Spectral Theory and Differential Operators. Oxford:Clarendon Press, 1987
[14] Egorov Y, Kondratiev V. On Spectral Theory of Elliptic Operators. Basel:Birkhäuser, 1996
[15] Jeanjean L. On the existence of bounded Palais-Smale sequence and application to a Landesman-Lazer type problem on R^N. Proc Roy Soc Edinburgh Sect A, 1999, 129:787-809
[16] Jeanjean L, Tanaka K. A positive solution for an asymptotically linear elliptic problem on R^N autonomous at infinity. ESAIM Control Optim Calc Var, 2002, 7:597-614
[17] Kryszewski W, Szulkin A. Generalized linking theorem with an application to a semilinear Schrödinger equations. Adv Differential Equations, 1998, 3:441-472
[18] Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1:223-283
[19] Li G B, Szulkin A. An asymptotically periodic Schrödinger equations with indefinite linear part. Commun Contemp Math, 2002, 4:763-776
[20] Li G B, Zhou H S. The existence of a positive solution to asymptotically linear scalar field equations. Proc Roy Soc Edinburgh Sect A, 2000, 130:81-105
[21] Mederski J. Solutions to a nonlinear Schrödinger equation with periodic potential and zero on the boundary of the spectrum. arXiv:1308.4320v1[math.AP]
[22] Micheletti A M, Saccon C. Multiple solutions for an asymptotically linear problem in RN. Nonlinear Anal, 2004, 56:1-18
[23] Pankov A. Periodic nonlinear Schröinger equation with application to photonic crystals. Milan J Math, 2005, 73:259-287
[24] Qin D D, Tang X H. Two types of ground state solutions for a periodic Schrödinger equation with spectrum point zero. Electron J Differential Equations, 2015, 2015(190):1-13
[25] Qin D D, Tang X H. New conditions on solutions for periodic Schrödinger equations with spectrum zero. Taiwanese J Math, 2015, 19:977-993
[26] Qin D D, Tang X H. Asymptotically linear Schrödinger equation with zero on the boundary of the spectrum. Electron J Differential Equations, 2015, 2015(213):1-15
[27] Qin D D, He Y B, Tang X H. Ground state solutions for Kirchhoff type equations with asymptotically 4-linear nonlinearity. Comput Math Appl, 2016, 71:1524-1536
[28] Qin D D, Tang X H. Time-harmonic Maxwell equations with asymptotically linear polarization. Z Angew Math Phys, 2016, 67(39):719-740
[29] Rabinowitz P H. On a class of nonlinear Schrödinger equations. Z Angew Math Phys, 1992, 43:270-291
[30] Reed M, Simon B. Methods of Modern Mathematical Physics, IV:Analysis of Operators. New York:Academic Press, 1978
[31] Struwe M. Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonion Systems. Berlin:Springer-Verlag, 2000
[32] Szulkin A, Weth T. Ground state solutions for some indefinite variational problems. J Funct Anal, 2009, 257(12):3802-3822
[33] Szulkin A, Zou W M. Homoclinic orbits for asymptotically linear Hamiltonian systems. J Funct Anal, 2001, 187:25-41
[34] Tang X H. New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation. Adv Nonlinear Stud, 2014, 14:361-373
[35] Tang X H. New conditions on nonlinearity for a periodic Schrödinger equation having zero as spectrum. J Math Anal Appl, 2014, 413:392-410
[36] Tang X H. Non-Nehari manifold method for asymptotically linear Schrödinger equation. J Aust Math Soc, 2015, 98:104-116
[37] Tang X H. Non-Nehari manifold method for superlinear Schrödinger equation. Taiwanese J Math, 2014, 18:1957-1979
[38] Tang X H. Non-Nehari manifold method for periodic discrete superlinear Schrödinger equation. Acta Mathematica Sinica (English Series), 2016, 32:463-473
[39] Troestler C, Willem M. Nontrivial solution of a semilinear Schrödinger equation. Comm Partial Differential Equations, 1996, 21:1431-1449
[40] Van Heerden F A. Multiple solutions for a Schrödinger type equation with an asymptotically linear term. Nonlinear Anal, 2003, 55:739-758
[41] Van Heerden F A. Homoclinic solutions for a semilinear elliptic equation with an asymptotically linear nonlinearity. Calc Var Partial Differential Equations, 2004, 20:431-455
[42] Van Heerden F A, Wang Z Q. Schrödinger type equations with asymptotically linear nonlinearities. Differential Integral Equations, 2003, 16:257-280
[43] Willem M. Minimax Theorems. Boston:Birkhäuser, 1996
[44] Willem M, Zou W. On a Schrödinger equation with periodic potential and spectrum point zero. Indiana Univ Math J, 2003, 52:109-132
[45] Yang M, Chen W, Ding Y. Solutions for periodic Schrödinger equation with spectrum zero and general superlinear nonlinearities. J Math Anal Appl, 2010, 364(2):404-413
[46] Zhou H S. Positive solution for a semilinear elliptic equation which is almost linear at infinity. Z Angew Math Phys, 1998, 49:896-906 |