[1] Camassa R, Holm D. An integrable shallow water equation with peaked solitions. Physical Review Letters, 1993, 11:1661-1664
[2] Fuchssteiner B, Fokas A. Symplectic strutures their Backlund transformation and herditary symmetries. Physica D, 1981, 4:47-66
[3] Camassa R, Holm D, Hyman J. A new integrable shallow water equation. Advances in Applied Mechanics, 1994, 31:1-33
[4] Fisher M, Sehiff J. The Camassa Holme equations:conserved quantities and the initial value Problem. Physics Letters A, 1999, 259(3):371-376
[5] Clarkson P, Mansfield E, priestley T. Symetries of a class of nonlinear third-order partial differential equations. Mathematical and Computer Modelling, 1997, 25}(8):195-212
[6] CooPer F, ShePard H. Solitons in the Camassa-Holm shallow watere equation. Physics Letters A, 1994, 194(4):246-250
[7] Constantin A, Eseher J. Global existence and blow-up for a shallow watere equation. Annali Della Scuola Normale Superiore Di Pisa Classe Di Scienze, 1998, 26:303-328
[8] Tian L X, Shi Q. Boundary control of viscous Dullin-Gottwald-Holm equation. International Journal of Nonlinear Science, 2007, 4(1):67-75
[9] Feng K, Qin M Z. The symplectic methods for the computation of Hamiltonian equations//Lecture Notes in Math, 1297. Berlin:Springer, 1987:1-37
[10] Liu T T, Qin M Z. Multi-symplectic geometry and multi-symplectic preissmann scheme for the KP equation. Journal of Mathematical Physics, 2002, 43(8):4060-4077
[11] Tian Y M, Qin M Z, Zhang Y M, Ma T. The multi-symplectic numerical method for Gross-Pitaevskii equation. Computer Physics Communications, 2008, 176(6):449-458
[12] Wang Y S, Wang B, Qin M Z. Concatenating construction of multi-symplectic scheme for 2+1 dimensional sine-Gordon equation. Science in China (Series A), 2004, 47(1):18-30
[13] Escher J, Lechtenfeld O, Yin Z. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete and Continuous Dynamical Systems-Series A, 2007, 19}:493-513
[14] Kong L H, Liu R X, Zheng X H. A survey on symplectic and multi-symplectic algorithms. Applied Mathematics and Computation, 2007, 186:670-684
[15] Leimkuhler B, Reich S. Simulating Hamiltonian Dynamics. Cambridge:Cambridge University Press, 2004
[16] Islas A, Schober C. Backward error analysis for multisymplectic discretization of Hamiltonian PDEs. Mathematics and Computers in Simulation, 2005, 69:290-303
[17] Moore B, Reich S. Backward error analysis for multi-symplectic integration methods. Numerische Mathematik, 2003, 95:625-652
[18] Wang J. Multisymplectic forier pseudospectral method for the nonlinear schrodinger equation with wave operator. Journal of Computational Mathematics, 2007, 25(1):31-48
[19] 殷久利, 田立新. 一类非线性色散方程中的新型奇异孤立波. 物理学报, 2009, 58(6):3632-3636 Yin J L, Tian L X. New exotic solitary waves in one type of nonlinear dispersive equations. Acta Physica Sinica, 2009, 58(6):3632-3636 |