[1] Kubo F, Ando T. Means of positive semidefinite linear matrices. Math Ann, 1980, 246: 205-224
[2] Zhan X. Singular values of differences of positive semidefinite matrices. SIAM J Matrix Anal Appl, 2000, 22: 819-823
[3] Bhatia R, Kittaneh F. The matrix arithmetic-geometric mean inequality revisted. Linear Algebra Appl, 2008, 428: 2177-2191
[4] Bhatia R, Kittaneh F. Notes on matrix arithmetic-geometric mean inequalities. Linear Algebra Appl, 2000, 308: 203-211
[5] Gumus I H, Hirzallah O, Taskara N. Singular value inequalities for the arithmetic, geometric and Heinz means of matrices. Linear and Multilinear Algebra, 2011, 59(12): 1383-1392
[6] Kittaneh F, Manasrah Y. Improved Young and Heinz inequalities for matrices. J Math Anal Appl, 2010, 361: 262-269
[7] Fack T, Kosaki H. Generalized s-numbers of τ-measurable operators. Pac J Math, 1986, 123: 269-300
[8] Kittaneh F, Manasrah Y. Reverse Young and Heinz inequalities for matrices. Linear and Multilinear Algebr, 2011, 59(9): 1031-1037
[9] Pisier G, Xu Q. Noncommutative Lp-spaces//Johnson W B. Handbook of the Geometry of Banach spaces. Amsterdam: North-Holland, 2003: 1459-1517
[10] Jingjing Shao. On Young and Heinz inequalities for τ-measurable operators. J Math Anal Appl, 2014, 414: 243-249 |