[1] Lin S S. Stability of gaseous stars in spherically symmetric motions. SIAM J Math Anal, 1997, 28: 539-569
[2] Luo T, Smoller J. Rotating fluids with self-gravitation in bounded domains. Arch Rational Mech Anal, 2004, 173(3): 345-377
[3] Deng Y B, Gao Y, Xiang J L. Solutions of Euler-Poisson equations in Rn. Acta Math Sci, 2008, 28B(1): 24-42
[4] Luo T, Smoller J. Existence and non-linear stability of rotating star solutions of the compressible Euler-Poisson equations. Arch Rational Mech Anal, 2009, 191: 447-496
[5] Li Y Y. On uniformly rotating stars. Arch Rational Mech Anal, 1991, 115(4): 367-393
[6] Chanillo, Sagun, Li Y Y. On diameters of uniformly rotating stars. Comm Math Phys, 1994, 166(2): 417-430
[7] Deng Y B, Xie H Z. Multiple stationary solutions of Euler-Poisson equations for non-isentropic gaseous stars. Acta Math Sci, 2010, 30B(6): 2077-2088
[8] Xie H Z, Li S L. Stationary solutions of Euler-Poisson equations for non-isentropic gaseous stars. Math Meth Appl Sci, 2012, 35(13): 1518-1531
[9] Deng Y B, Liu T P, et al. Solutions of Euler-Poisson equations for gaseous stars. Arch Rational Mech Anal, 2002, 164(3): 261-285
[10] Deng Y B, Yang T. Multiplicity of stationary solutions to the Euler-Poisson equations. J D Equations, 2006, 231: 252-289
[11] Xiang J L. A note on the existence of stationary solutions of the compressible Euler-Poisson equations with 6/5<γ<2. Acta Math Sci, 2013, 33B(4): 936-942
[12] Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Heidelberg, New York: Springer-Verlag, 2001 |