[1] Saewan S, Kumam P. A modified hybrid projection method for solving generalized mixed equilibrium problems and fixed point problems in Banach spaces. Comput Math Appl, 2011, 62: 1723-1735
[2] Zhang S. Generalized mixed equilibrium problem in Banach spaces. Appl Math Mech, 2009, 30: 1105-1112
[3] Yao Y, Cho Y J, Liou Y. Algorithms of common solutions for variational inclusions, mixed equilibrium problems and fixed point problems. Eur J Oper Res, 2011, 212: 242-250
[4] Kim J K, Cho S Y, Qin X. Some results on generalized equilibrium problems involving strictly pseudocontractive mappings. Acta Math Sci, 2011, 31B(5): 985-996
[5] Stampacchia G. Formes bilineaires coercitives sur les ensembles convexes. Académie des Sciences de Paris, 1964, 258: 4413-4416
[6] Blum E, Oettli W. From optimization and variational inequalities to equilibrium problems. Math Student, 1994, 63: 123-145
[7] Noor M A. Some predictor-corrector algorithms for multivalued variational inequalities. Journal of Optimization Theory and Applications, 2001, 108(3): 659-671
[8] Noor M A. On a class of nonconvex equilibrium problems. Appl Math Comput, 2004, 157: 653-666
[9] Noor M A, Themistocles M. On general hemiequilibrium problems. J Math Anal Appl, 2006, 324: 1417-1428
[10] Noor M A. Multivalued general equilibrium problems. J Math Anal Appl, 2003, 283: 140-149
[11] Kim J K, Anh P N, Hyun H G. A proximal point-type algorithm for pseudomonotone equilibrium problems. Bull Korean Math Soc, 2012, 49: 749-759
[12] Burachik R, Kassay G. On a generalized proximal point method for solving equilibrium problems in Banach spaces. Nonlinear Anal, 2012, 75: 6456-6464
[13] Tada A, Takahashi W. Weak and strong convergence theorems for nonexpansive mappings and equilibrium problems. J Optim Theory Appl, 2007, 133: 359-370
[14] Changa S, Joseph Leeb H W, Chanb C K. A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Analysis: Theory, Methods & Applications, 2009, 70: 3307-3319
[15] Noor M A. Some iterative schemes for solving extended general quasi variational inequalitie. Appl Math Inf Sci, 2013, 7(3): 917-925
[16] Takahashi S, Takahashi W. Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J Math Anal Appl, 2007, 331: 506-515
[17] Kumam P. A hybrid approximation method for equilibrium and fixed point problems for a monotone mapping and a nonexpansive. Nonlinear Anal, Hybrid Syst, 2008, 18: 1245-1255
[18] Plubtieng S, Punpaeng R. A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces. J Math Anal Appl, 2007, 336(1): 455-469
[19] Shehu Y. Iterative approximation for common solutions of equilibrium problems, variational inequality and fixed point problems. Mathematical and Computer Modelling, 2013, 57: 1489-1503
[20] Shi P. Equivalence of variational inequalities with Wiener-Hopf equations. Proc Amer Math Soc, 1991, 111: 339-346
[21] Verma R U. Generalized variational inequalities involving multivalued relaxed monotone operators. Appl Math Lett, 1997, 10: 107-109
[22] Robinson S M. Normal maps induced by linear transformations. Math Oper Res, 1992, 17(3): 691-714
[23] Noor M A, Huang Z. Wiener-Hopf equation technique for variational inequalities and nonexpansive mappings. Applied Mathematics and Computation, 2007, 191: 504-510
[24] Al-Shemas E. General nonconvex Wiener-Hopf equations and general nonconvex variational inequalities. J Math Sci Adv Appl, 2013, 19(1): 1-11
[25] Shimoji K, Takahashi W. Strong convergence to common fixed points of infinite nonexpansive mappings and applications. Taiwanese J Math, 2001, 5: 387-404
[26] Marino G, Xu H K. A general iterative method for non-expansive mapping in Hilbert spaces. J Math Anal Appl, 2006, 318: 43-52
[27] Yao Y, Kang S M, Liou Y C. Algorithms for approximating minimization problems in Hilbert spaces. J Comput Anal Appl, 2011, 235: 3515-3526 |