[1] Borg G. Eine Umkehrung der Sturm-Liouville eigenwertaufgabe. Acta Math, 1946, 78: 1--96
[2] Levinson N. The inverse Sturm-Liouville problems. Mat Tidsskr B, 1949, 25: 25--30
[3] Hochstadt H, Lieberman B. An inverse Sturm-Liouville problem with mixed given data. SIAM J Appl Math, 1978, 34: 676--680
[4] Hald O. Inverse eigenvalue problem for the mantal. Geophys J R Astr Soc, 1980, 62: 41--48
[5] Gesztesy F, Simon B. Inverse spectral analysis with partial information on the potential, I the case of an a.c. component in the spectrum.
Helv Phys Acta, 1997, 70: 66--71
[6] Gesztesy F, Simon B. Inverse spectral analysis with partial information on the potential, II the case of discrete spectrum. Trans Am Math Soc, 2000, 352: 2765--3787
[7] Del Rio R, Gesztesy F, Simon B. Inverse spectral analysis with partial information on the potential, III updating boundary conditions.
Int Math Res Not, 1997, 15: 751--758
[8] Freiling G, Yurko V. Inverse Sturm-Liouville Problems And Their Applications. Huntington N Y: Nova Science Publishers, 2001
[9] Wei G, Xu H K. On the missing eigenvalue problem for an inverse Sturm-Liouville problem. J Math Pures Appl, 2009, 91: 468--475
[10] Wei G, Xu H K. Inverse spectral problem with partial information given on the potential and norming constants. Trans Amer Math Soc, 2012, 364: 3265--3288
[11] Conway J B. Functions of One Complex Variable. New York: Springer, 1995
[12] Zettl A. Sturm-Liouville Theory. New York: American Mathematical Society, 2005 |