[1] Hughes T J R, Hulbert G M. Space--time finite element methods for elastodynamics: formulations and error estimates. Comput Methods Appl Mech Engrg, 1988, 66(3): 339--363
[2] Hulbert G M, Hughes T J R. Space--time finite element methods for second--order hyperbolic equations. Comput Methods Appl Mech Engrg, 1990, 84: 327--348
[3] Hulbert G M. The finite element methods for structural dynamics. Int J Numer Methods Engrg, 1992, 33: 307--331
[4] Johnson C. Discontinuous Galerkin finite element methods for second order hyperbolic problems. Comput Methods Appl Mech Engrg,
1993, 107: 117--129
[5] Thomée V. Galerkin Finite Element Methods for Parabolic Problems. New York: Springer--Verlag, 1997
[6] Karakashian O, Makridakis Ch. A space--time finite element method for the nonlinear Schr\"{o}dinger equation: the discontinuous Galerkin method. Math Comput, 1998, 67: 479--499
[7] Li H, Liu R X. The space--time finite element methods for parabolic problems. Appl Math Mech, 2001, 22: 687--700
[8] 李宏. 非线性抛物方程的时空有限元法的误差估计. 高等学校计算数学学报, 2005, 27(1): 34--45
[9] 李宏, 王焕清. 半线性抛物型积分微分方程的间断时空有限元法. 计算数学, 2006, 28(3): 293--308
[10] 何斯日古楞, 李宏. 带广义边界条件的四阶抛物型方程的混合间断时空有限元法. 计算数学, 2009, 31(2): 167--178
[11] Sun T, Ma K. A space--time discontinuous Galerkin method for linear convection-dominated Sobolev equations. Appl Math Comput,
2009, 210: 490--503
[12] French D A. A space--time finite element method for the wave equation. Comput Methods Appl Mech Engrg, 1993, 107: 145--157
[13] 应隆安, 陈传淼. 有限元理论与方法(第二分册). 北京: 科学出版社, 2009
[14] Chien C C, Yang C S, Tang J H. Three--dimensional transient elastodynamic analysis by a space and time discontinuous Galerkin finite element method. Finite Elem Anal Des, 2003, 39: 561--580
[15] 于开平, 邹经湘. 时域有限元法. 力学进展, 1998, 28(4): 461--468
[16] Kunthong P, Thompson L L. An efficient solver for the high--order accurate time-discontinuous Galerkin (TDG) method for second-order hyperbolic systems. Finite Elem Anal Des, 2005, 41: 729--762
[17] Li X D, Wiberg N E. Structural dynamic analysis by a time--discontinuous Galerkin finite element method. Int J Numer Methods Engrg, 1996, 39: 2131--2152
[18] Li X, Yao D. Time discontinuous Galerkin finite element method for dynamic analysis in saturated poro--elasto--plastic medium.
Acta Math Sin (English Ed), 2004, 20: 64--75
[19] Dautray R, Lious I. Evolution Problems I, Mathematical Analysis and Numerical Methods for Science and Technology, Vol 5. Berlin: Springer, 1988
[20] Evans L C. Partial Differential Equations. Providence, RI: AMS Press, 1999
[21] Hughes T J R, Marsden J E. Classical elastodyanmics as a linear symmetric hyperbolic system. Journal of Elasticity, 1978, 8: 97--110
[22] Brenner S C, Scott L R. The Mathematical Theory of Finite Element Methods. New York: Springer-Verlag, 2002 |