数学物理学报 ›› 2010, Vol. 30 ›› Issue (6): 1534-1541.

• 论文 • 上一篇    下一篇

复系数奇异Sturm-Liouville方程的极限点和极限圆分类

景海斌1|綦建刚2|岳崇山3   

  1. 1.河北建筑工程学院数理系 河北张家口 075024|2.山东大学威海分校数学与统计学院 山东威海 264209; 3.河北北方学院数学系 河北张家口 075000
  • 收稿日期:2008-12-17 修回日期:2010-01-06 出版日期:2010-12-25 发布日期:2010-12-25
  • 基金资助:

    山东省自然科学基金(Y2008A02)资助

Limit-point and Limit-circle Classification of |Singular Sturm-Liouville Equations with Complex Coefficients

 JING Hai-Bin1, QI Jian-Gang2, YUE Chong-Shan3   

  1. 1.Department of Mathematics and Physics, Hebei Institute of Architecture and Civil Engineering, Hebei Zhangjiakou 075000;
    2.Faculty of Mathematics and Statistics, Shandong University at Weihai, Shandong Weihai 264209;
    3.Department of Mathematics, Hebei North University, Hebei Zhangjiakou 075000
  • Received:2008-12-17 Revised:2010-01-06 Online:2010-12-25 Published:2010-12-25
  • Supported by:

    山东省自然科学基金(Y2008A02)资助

摘要:

该文利用对称Hamilton微分系统的极限点、极限圆分类理论(不同于B.M.Brown等人采用的方法), 给出了复系数奇异Sturm-Liouville方程的Sims分类:极限点1型、极限点2型和极限圆型; 并且建立了极限点1型的两个判别准则; 最后通过举例肯定地回答了B.M.Brown等人提出的开问题.

关键词: 奇异Sturm-Liouville方程, 极限点型, 复系数

Abstract:

By using limit-point(circle) classification theory of symmetric Hamiltonian differential systems, different from the method used by B.M.Brown et al, the paper gives the Sims classification of singular Sturm-Liouville equations with complex coefficients: limit-point-1 case, limit-point-2 case and limit-circle case. Then two limit-point-1 case criteria are obtained. Furthermore, the authors give an affirmative answer to the open problem of B.M.Brown et al by an example.

Key words: Singular Sturm-Liouville equations, Limit-point case, Complex coefficients

中图分类号: 

  • 34B24