数学物理学报 ›› 2010, Vol. 30 ›› Issue (6): 1528-1533.

• 论文 • 上一篇    下一篇

拓扑向量空间中的广义向量F-隐补问题

冯世强|高大鹏|李军   

  1. 西华师范大学 数学与信息学院 四川南充 637002
  • 收稿日期:2008-07-12 修回日期:2009-12-22 出版日期:2010-12-25 发布日期:2010-12-25
  • 基金资助:

    国家自然科学基金(60804065)、四川省教育厅重点项目(07ZA123)和西华师范大学科研启动基金(08B075)资助

Generalized Vector F-implicit Complementarity Problems in Topological Vector Spaces

 FENG Shi-Qiang, GAO Da-Feng, LI Jun   

  1. School of Mathematics and Information, China West Normal University, Sichuan Nanchong |637002
  • Received:2008-07-12 Revised:2009-12-22 Online:2010-12-25 Published:2010-12-25
  • Supported by:

    国家自然科学基金(60804065)、四川省教育厅重点项目(07ZA123)和西华师范大学科研启动基金(08B075)资助

摘要:

该文在拓扑向量空间中引入了一类新的向量F-隐补问题(简记为:(GVF-ICP))和两类(强和弱)向量F-隐变分不等式问题(分别简记为:(GVF-IVI)1和(GVF-IVI)2). 在齐性条件下得到了(GVF-ICP)与(GVF-IVI)1的等价关系, 同时在适当假设下利用KKM定理得到了(GVF-IVI)2的新的解的存在性定理.

关键词: 广义向量F-隐补问题, 广义向量F-隐变分不等式, 拓扑向量空间, KKM定理, 存在性

Abstract:

In this work, the authors introduce a new class of vector F-implicit complementarity problems (for short, GVF-ICP) and two classes of 
(strong and weak) vector F-implicit variational inequalities (for short, (GVF-IVI)1 and (GVF-IVI)2, respectively) in topological vector spaces. They present the equivalence between (GVF-ICP) and (GVF-IVI)1 under homogeneity. They also derive some new existence theorems of solutions for (GVF-IVI)2 by using the KKM theorem under some suitable assumptions.

Key words: Generalized vector F-implicit complementarity problem, Generalized vector F-implicit variational inequality,  Topological vector space, KKM theorem, Exsitence

中图分类号: 

  • 90J33