[1] Ciarlet P G. The Finite Element Method for Elliptic Problems. Philadelphia: Society for Industrial and Applied Mathematics, 2002
[2] Brenner S C, Scott L R. The Mathematical Theory of Finite Element Methods. New York: Springer-Verlag, 2002
[3] Geveci T. On the approximation of the solution of an optimal control problem governed by an elliptic equation. RAIRO Anal Numer, 1979, 13: 313--328
[4] Alt W, Mackenroth U. Convergence of finite element approximation to state constraint convex parabolic boundary control problems. SIAM J Control Optimi, 1989, 27: 718--736
[5] Becker R, Kapp H, Rannacher R. Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J Control Optimi, 2000, 39: 113--132
[6] Kufner A, John O, Fucik S. Function Spaces. Leyden: Nordhoff, 1977
[7] Duvaut G, Lions J L. The Inequalities in Mechanics and Physics. Berlin: Springer, 1973
[8] Lions J L. Optimal Control of Systems Governed by Partial Differential Equations. Berlin: Springer-Verlag, 1971
[9] Tiba D. Lectures on the Optimal Control of Elliptic Equations. Finland: University of Jyvaskyla Press, 1995
[10] Neittaanmaki P, Tiba D. Optimal Control Of Nonlinear Parabolic Systems-Theorey, Algorithms and Applications. New York: M Dekker, 1994
[11] Pironneau O. Optimal Shape Design for Elliptic Systems. Berlin: Springer-Verlag, 1984
[12] Falk F S. Approximation of a class of optimal control problems with order of convergence estimates. J Math Anal Appl, 1973, 44: 28--47
[13] Liu W B, Tiba D. Error estimates for the finite element approximation of nonlinear optimal control problems. Numer Func Anal Optim, 2001, 22: 953--972
[14] Liu W B, Yan N N. A posteriori error estimates for optimal control problems governed by parabolic equations. Numer Math, 2003, 93: 497--521
[15] Liu W B, Yan N N. A posteriori error estimates for distributed convex optimal control problems. Advance Comput Math, 2001, 15: 285--309
[16] Liu W B, Yan N N. A posteriori error estimates for control problems governed by nonlinear elliptic equations. Appl Numer Math, 2003, 47: 173--187
[17] Li R, et al. Adaptive finite elememt approximation of elliptic optimal control. SIAM J Control Optim, 2002, 41: 1321--1349
[18] Li R, et al. Adaptive finite elememt approximation for distributed optimal control governed by parabolic equations. Submitted to SIAM J Control Optim
[19] Liu W B, Yan N N. A posteriori error estimates for control problems governed by stockes equations. SIAM J Numer Anal, 2002, 40: 1850--1869
[20] Wheeler M F. A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J Numer Anal, 1973, 10: 723--759 |