数学物理学报 ›› 2008, Vol. 28 ›› Issue (6): 1187-1193.

• 论文 • 上一篇    下一篇

拟线性退化抛物型方程组解的整体存在性和爆破

栗付才   

  1. (南京大学数学系 南京 210093)
  • 收稿日期:2006-09-28 修回日期:2008-06-03 出版日期:2008-12-25 发布日期:2008-12-25
  • 通讯作者: 栗付才
  • 基金资助:

    国家自然科学基金(10501047,10426030)和南京大学引进人才基金资助

Global Existence and Blow-up of Solutions to a Quasi-linear Degenerate Parabolic System

Li Fucai   

  1. (Department of Mathematics, Nanjing University, Nanjing 210093)
  • Received:2006-09-28 Revised:2008-06-03 Online:2008-12-25 Published:2008-12-25
  • Contact: Li Fucai

摘要:

该文研究光滑有界区域Ω( RN (N≥ 1) 上具有齐次Dirichlet边界条件的拟线性退化抛物型方程组

ut-div(|▽u|p-2u) =avα, vt-div(|▽v|q-2v) =buβ

的非负解的性质, 其中p, q>2, α, β ≥ 1, a, b> 0是常数. 该文指出上述方程组的解是否在有限时刻爆破依赖于初值、系数 ab以及 αβ 和 (p-1)(q-1)之间的关系.

关键词: 拟线性退化抛物型方程组, 非线性源, 整体存在, 爆破

Abstract:

This paper investigates the nonnegative solutions of quasi-linear degenerate
parabolic system

ut-div(|▽u|p-2u) =avα, vt-div(|▽v|q-2v) =buβ
with zero Dirichlet boundary conditions in a smooth bounded domain Ω( RN (N≥ 1), where p, q>2, α, β ≥ 1, a, b>0 are constants. It is obtained that whether the solution blows up in finite time or not depends on the initial data, the coefficients a and b, and the relation between αβ and (p-1)(q-1).

Key words: Quasi-linear degenerate parabolic system, Nonlinear source, Global
existence,
Blow-up

中图分类号: 

  • 35K65