1 Berger T, Ye Zhongxing. ε-entropy and critical distortion of random fields. IEEE Trans on Information theory, 1990,IT-36(4):717-725
2 Ye Zhongxing, Berger T.A new method to estimate the critical distortion of random fields. IEEE Trans on Information theory, 1992,IT-38(1):152-157
3 叶中行.格上Ising模型的临界失真估计.数学物理学报,1995, 15(4):407-414
4 Gray R M. Information rates of autoregressive processes. IEEE Trans on Information theory, 1970,IT-16:412-421
5 Newman C M, Baker G A. Decomposition of Ising model and the Mayer expansion. Ideals and Methods in Mathematics and Physics. In:S.Albeverio etc. eds. Memory of Raphael HoeghKrohn (1938-1988). Cambridge Univ Press, 1991
6 Bassalygo L A,Dobrushin R L.ε-entropy of the random field. Prob Peredach Inform 1987, 23(1):3-15
7 Hajek B,BergerT. A decomposition theorem for binary Markov random fields. Ann Proba, 1987, 15(3):1112-1125
8 Newman C M. Decomposition of binary random fields and zeros of partition functions. Ann Proba, 1987, 15(3):1126-1130
9 Ruelle D. Some remarks on the location of zeroes of the partition function for lattice systems. Commun Math Phys,1973,31:265-277
10 Avram F,BergerT. On critical distortion for Markov sources. IEEE Trans. on Information theory, 1985, IT-31(5): 688-690
11 Fllmer H. On entropy and information gain in random fields. Z Wahrschein. verw Geb,1973,26:207-217
12 Lee T A. On the ratedistortion function of the Ising model. Master's thesis. Dept of Elec Eng, Cornell Univ,1984
13 Gordon R. Error bounds in equilibrium statistical mechanics. J Math Phys, 1968, 9(5):655-663 |