1 |
LIU T T , WANG J , GUO X Y . Proton magnetic resonance spectroscopy in brain science researches[J]. Chinese J Magn Reson, 2020, 37 (2): 232- 240.
|
|
刘涛涛, 王杰, 郭向阳. 脑科学研究中的质子磁共振波谱方法[J]. 波谱学杂志, 2020, 37 (2): 232- 240.
|
2 |
LEI Z Y , LIANG X M , LEI Y Y , et al. Progresses in solid-state NMR studies on carbon anode materials for lithium/sodium-ion batteries[J]. Chinese J Magn Reson, 2020, 37 (1): 28- 39.
|
|
雷振宇, 梁欣苗, 雷友义, 等. 固体核磁共振技术在锂/钠离子电池碳负极中的应用及研究进展[J]. 波谱学杂志, 2020, 37 (1): 28- 39.
|
3 |
ZOU L , MOTIYENKO R A , MARGULèS L , et al. Millimeter wave emission spectrometer based on direct digital synthesis[J]. Rev Sci Instrum, 2020, 91 (6): 063104.
doi: 10.1063/5.0004461
|
4 |
LIANG X , TANG X , TANG W , et al. A high-field magnetic resonance imaging spectrometer using an oven-controlled crystal oscillator as the local oscillator of its radio frequency transceiver[J]. Rev Sci Instrum, 2014, 85 (9): 094705.
doi: 10.1063/1.4894657
|
5 |
LIANG X , WEIMIN W . A radio-frequency source using direct digital synthesis and field programmable gate array for nuclear magnetic resonance[J]. Rev Sci Instrum, 2009, 80 (12): 124703.
doi: 10.1063/1.3271379
|
6 |
HE G , WANG W M . A multi-channel radiofrequency transmitter for high-field MRI[J]. Chinese J Magn Reson, 2017, 34 (3): 338- 346.
|
|
何刚, 王为民. 一种用于高场MRI的多源射频发射机[J]. 波谱学杂志, 2017, 34 (3): 338- 346.
|
7 |
LI L , WYRWICZ A M . A multifunction digital receiver suitable for real-time frequency detection and compensation in fast magnetic resonance imaging[J]. Rev Sci Instrum, 2019, 90 (5): 053707.
doi: 10.1063/1.5092312
|
8 |
REN J J , XU Q , LI G Y . A digital receiver based on direct RF sampling for low-field MRI scanner[J]. Chinese J Magn Reson, 2007, 24 (1): 27- 33.
|
|
任洁静, 徐勤, 李鯁颖. 用于低场磁共振成像的直接射频采样数字接收机[J]. 波谱学杂志, 2007, 24 (1): 27- 33.
|
9 |
SA B , KALINOWSKI H O , BERGER S . 150 and more basic NMR experiments[M]. 2nd ed Weinhcim: Wiely-VCH, 1998.
|
10 |
BAILES D , GILDERDALE D , BYDDER G , et al. Respiratory ordered phase encoding (ROPE): a method for reducing respiratory motion artefacts in MR imaging[J]. J Comput Assist Tomogr, 1985, 9 (4): 835- 838.
doi: 10.1097/00004728-198507010-00039
|
11 |
ZUR Y , STOKAR S . A phase-cycling technique for canceling spurious echoes in NMR imaging[J]. J Magn Reson, 1987, 71 (2): 212- 228.
|
12 |
HAACKE E M , LIU S , BUCH S , et al. Quantitative susceptibility mapping: current status and future directions[J]. Magn Reson Imaging, 2015, 33 (1): 1- 25.
|
13 |
NING R P , LIU Y , REN J J , et al. Phase coherence between RF Transmitter and receiver in digital MRI spectrometer[J]. Chinese J Magn Reson, 2007, 24 (4): 439- 445.
|
|
宁瑞鹏, 刘燕, 任洁静, 等. 磁共振成像数字谱仪的射频发射接收通道相位相干性的研究[J]. 波谱学杂志, 2007, 24 (4): 439- 445.
|
14 |
汤伟男, 高加红. 一种实现发射源和接收源相位同步的方法及装置: 中国, ZL201410001287. X[P]. 2014-04-30.
|
15 |
蒋瑜, 徐俊成, 廖文姗, 等. 一种保持发射/接收通道相位相干的装置及方法: 中国, ZL202010710355.5[P]. 2020-07-22.
|
16 |
NING R P , DAI Y D , YANG G , et al. A digital receiver with fast frequency- and gain-switching capabilities for MRI systems[J]. MAGMA, 2009, 22 (6): 333- 342.
|
17 |
TANG W N , SUN H Y , WANG W M . A digital receiver module with direct data acquisition for magnetic resonance imaging systems[J]. Rev Sci Instrum, 2012, 83 (10): 104701.
|