1 |
YANG L Q , LIN F C , LEI H . Resting state functional connectivity in brain studied by fMRI approach[J]. Chinese J Magn Reson, 2010, 27 (3): 326- 340.
doi: 10.3969/j.issn.1000-4556.2010.03.005
|
|
杨丽琴, 林富春, 雷皓. 静息状态下脑功能连接的磁共振成像研究[J]. 波谱学杂志, 2010, 27 (3): 326- 340.
doi: 10.3969/j.issn.1000-4556.2010.03.005
|
2 |
CHENG L W , WANG L L , ZHONG K . Application of fMRI in transcranial direct current stimulation researches[J]. Chinese J Magn Reson, 2020, 37 (4): 533- 546.
|
|
程力维, 王璐璐, 钟凯. fMRI在经颅直流电刺激研究中的应用进展[J]. 波谱学杂志, 2020, 37 (4): 533- 546.
|
3 |
VARONE G, HUSSAIN Z, SHEIKH Z, et al. Real-time artifacts reduction during TMS-EEG co-registration: A comprehensive review on technologies and procedures[J]. Sensors (Basel, Switzerland), 21(2): 637.
|
4 |
COHEN D . Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer[J]. Science, 1972, 175 (4022): 664- 666.
doi: 10.1126/science.175.4022.664
|
5 |
COHEN . Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents[J]. Science, 1968, 161 (3843): 784- 786.
doi: 10.1126/science.161.3843.784
|
6 |
GRATTA C D , PIZZELLA V , TECCHIO F , et al. Magnetoencephalography - a noninvasive brain imaging method with 1 ms time resolution[J]. Rep Prog Phys, 2001, 64 (12): 1759- 1814.
doi: 10.1088/0034-4885/64/12/204
|
7 |
VRBA J . Multichannel SQUID biomagnetic systems. applications of superconductivity[M]. Springer Netherlands, 2000, 61- 138.
|
8 |
CHEN M J , LIAO S X , YANG H C , et al. Nuclear magnetic resonance and imaging of hyperpolarized 3He using high-Tc superconducting quantum interference device in microtesla magnetic fields[J]. Chinese J Magn Reson, 2010, 27 (3): 386- 395.
doi: 10.3969/j.issn.1000-4556.2010.03.010
|
|
陈名杰, 廖书贤, 杨鸿昌, 等. 采用超导量子干涉组件在微特斯拉磁场下获取超极化3He的核磁共振波谱和影像[J]. 波谱学杂志, 2010, 27 (3): 386- 395.
doi: 10.3969/j.issn.1000-4556.2010.03.010
|
9 |
HÄMÄLÄINEN M , HARI R , ILMONIEMI R J , et al. Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain[J]. Rev Mod Phys, 1993, 65 (2): 413- 497.
doi: 10.1103/RevModPhys.65.413
|
10 |
WEINSTOCK H . SQUID sensors: fundamentals, fabrication and applications[J]. Springer Netherlands, 1996,
|
11 |
VRBA J . Magnetoencephalography: The art of finding a needle in a haystack[J]. J Psychophysiol, 2003, 17 (4): 237- 237.
|
12 |
MUKAMEL R , GELBARD H , ARIELI A , et al. Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex[J]. Science, 2005, 309 (5736): 951- 954.
doi: 10.1126/science.1110913
|
13 |
WANG X F , SUN X P , ZHAO X C , et al. Progress in biomagnetic signal measurements with ultra-sensitive atomic magnetometers[J]. Chinese Journal of Lasers, 2018, 45 (2): 0207012.
|
|
王晓飞, 孙献平, 赵修超, 等. 超灵敏原子磁力计在生物磁应用中的研究进展[J]. 中国激光, 2018, 45 (2): 0207012.
|
14 |
MA H F , WU Y T , ZHAO W , et al. Research progress of magnetoencephalography in the functional mechanism of bilingual brain[J]. Chinese Journal of Biomedical Engineering, 2021, 40 (4): 477- 484.
doi: 10.3969/j.issn.0258-8021.2021.04.12
|
|
马恒芬, 吴云涛, 赵文, 等. 双语脑功能机制的脑磁图研究进展[J]. 中国生物医学工程学报, 2021, 40 (4): 477- 484.
doi: 10.3969/j.issn.0258-8021.2021.04.12
|
15 |
XU W J , JIANG M , PENG X H . Study on ultra-low-field nuclear magnetic resonance spectroscopy based on high-sensitivity atomic magnetometer[J]. Journal of University of Science and Technology of China, 2020, 50 (8): 1138- 1143.
|
|
徐文杰, 江敏, 彭新华. 基于高灵敏度原子磁力计的超低场核磁共振谱学研究[J]. 中国科学技术大学学报, 2020, 50 (8): 1138- 1143.
|
16 |
ZHANG S L , CAO N . A synthetic optically pumped gradiometer for magnetocardiography measurements[J]. Chinese Physics B, 2020, 29 (4)
|
17 |
BOTO E , MEYER S S , SHAH V , et al. A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers[J]. Neuroimage, 2017, 149, 404- 414.
doi: 10.1016/j.neuroimage.2017.01.034
|
18 |
ZHANG X , CHEN C Q , ZHANG M K , et al. Detection and analysis of MEG signals in occipital region with double-channel OPM sensors[J]. J Neurosci Methods, 2020, 346, 108948.
doi: 10.1016/j.jneumeth.2020.108948
|
19 |
BOTO E , HOLMES N , LEGGETT J , et al. Moving magnetoencephalography towards real-world applications with a wearable system[J]. Nature, 2018, 555 (7698): 657- 661.
doi: 10.1038/nature26147
|
20 |
BARRY D N , TIERNEY T M , HOLMES N , et al. Imaging the human hippocampus with optically-pumped magnetoencephalography[J]. Neuroimage, 2019, 203, 116192.
doi: 10.1016/j.neuroimage.2019.116192
|
21 |
SEYMOUR R A , ALEXANDER N , MELLOR S , et al. Using OPMs to measure neural activity in standing, mobile participants[J]. Neuroimage, 2021, 244, 118604.
doi: 10.1016/j.neuroimage.2021.118604
|
22 |
SUN W , WANG H , ZHANG Y , et al. Optimal design for quantification of gas concentration based olfactory stimulator[J]. Chinese J Magn Reson, 2021, 38 (1): 12- 21.
|
|
孙韦, 王慧, 张寅, 等. 基于气体浓度定量的嗅觉刺激器优化设计[J]. 波谱学杂志, 2021, 38 (1): 12- 21.
|
23 |
IIVANAINENJ, ZETTERR, GRONM, 等. On-scalp MEG system utilizing an actively shielded array of optically-pumped magnetometers[J]. Neuroimage, 2019, 194, 244- 258.
|
24 |
HOLMES N , LEGGETT J , BOTO E , et al. A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography[J]. Neuroimage, 2018, 181, 760- 774.
doi: 10.1016/j.neuroimage.2018.07.028
|
25 |
KAWABATA N . Nonstationary power spectrum analysis of the photic alpha blocking[J]. Kybernetik, 1972, 12 (1): 40- 44.
doi: 10.1007/BF00289235
|
26 |
BRENNER D , WILLIAMSON S J , KAUFMAN L . Visually evoked magnetic fields of the human brain[J]. Science, 1975, 190 (4213): 480- 482.
doi: 10.1126/science.170683
|
27 |
JOHNSON C N , SCHWINDT P D , WEISEND M . Multi-sensor magnetoencephalography with atomic magnetometers[J]. Phys Med Biol, 2013, 58 (17): 6065- 6077.
doi: 10.1088/0031-9155/58/17/6065
|