1 |
KONG X Y , WANG R Z . Artificial intelligence and its application in medical field[J]. Journal of Medical Intelligence, 2016, 37 (11): 2- 5.
|
|
孔祥溢, 王任直. 人工智能及在医疗领域的应用[J]. 医学信息学杂志, 2016, 37 (11): 2- 5.
|
2 |
张明月. 基于深度学习的图像分割研究[D]. 长春: 吉林大学, 2017.
|
3 |
ZHOU H Y , LIU P C . Clinical value and research progress of MR in wrist facet joint lesions[J]. China Medical Engineering, 2010, 18 (3): 172- 175.
|
|
周海燕, 刘鹏程. MR在手腕部小关节病变的临床价值及研究进展[J]. 中国医学工程, 2010, 18 (03): 172- 175.
|
4 |
MA J , CHEN M , LI H , et al. Clinical observation of traditional Chinese medicine combined with antirheumatic drug treatment of rheumatoid arthritis in active stage[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2014, 20 (5): 192- 196.
|
|
马进, 陈岷, 李获, 等. 中药联合抗风湿药治疗类风湿性关节炎活动期的临床观察[J]. 中国实验方剂学杂志, 2014, 20 (05): 192- 196.
|
5 |
马强. 类风湿关节炎的腕关节MRI及临床应用研究[D]. 太原: 山西医科大学, 2003.
|
6 |
WEI X N , XING J Q , WANG Z Y , et al. Magnetic resonance image segmentation of articular synovium based on improved U-Net[J]. Journal of Computer Applications, 2020, 40 (11): 3340- 3345.
|
|
魏小娜, 邢嘉祺, 王振宇, 等. 基于改进U-Net的关节滑膜磁共振图像的分割[J]. 计算机应用, 2020, 40 (11): 3340- 3345.
|
7 |
LONG Z , ZHANG X , LI C , et al. Segmentation and classification of knee joint ultrasonic image via deep learning[J]. Applied Soft Computing, 2020, 97 (9): 106765.
|
8 |
LING Z, SONKA M, LE L, et al. Combining fully convolutional networks and graph-based approach for automated segmentation of cervical cell nuclei[C]. IEEE ISBI (Oral). IEEE, 2017.
|
9 |
PHAM D L , XU C Y , PRINCE J L . Current methods in medical image segmentation[J]. Annu Rev Biomed Eng, 2000, 2, 315- 337.
doi: 10.1146/annurev.bioeng.2.1.315
|
10 |
XIAO L , LOU Y K , ZHOU H Y . A U-net network-based rapid construction of knee models for specific absorption rate estimation[J]. Chinese J Magn Reson, 2020, 37 (2): 144- 151.
|
|
肖亮, 娄煜堃, 周航宇. 用于SAR估计的基于U-Net网络的快速膝关节模型重建[J]. 波谱学杂志, 2020, 37 (2): 144- 151.
|
11 |
FARAHANI A, MOHSENI H. Medical image segmentation using customized U-Net with adaptive activation functions[J]. Neural Computing & Applications, doi: 10.1007/s00521-020-05396-317.
|
12 |
ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: A nested U-Net architecture for medical image segmentation[C]. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: MICCAI 2018, Granada, Spain, 2018, 110453-11.
|
13 |
ZHAO S Y , WANG Y J . Classification of Alzheimer's disease patients based on magnetic resonance images and an improved UNet++ model[J]. Chinese J Magn Reson, 2020, 37 (3): 321- 331.
|
|
赵尚义, 王远军. 基于磁共振图像和改进的UNet++模型区分阿尔茨海默症患者和健康人群[J]. 波谱学杂志, 2020, 37 (3): 321- 331.
|
14 |
ZHANG K , GUO Y R , WANG X S , et al. Multiple feature reweight densenet for image classification[J]. IEEE Access, 2019, 7, 9872- 9880.
|
15 |
ZENG M J , XIAO N F . Effective combination of densenet and bilSTM for keyword spotting[J]. IEEE Access, 2019, 7, 10767- 10775.
doi: 10.1109/ACCESS.2019.2891838
|
16 |
TAO Y , XU M , LU Z , et al. DenseNet-based depth-width double reinforced deep learning neural network for high-resolution remote sensing image per-pixel classification[J]. Remote Sensing, 2018, 10 (5)
|
17 |
CHU X X, ZHANG B, XU R J. Searching beyond mobileNetV3[C]. ICASSP, 2020. https://arxiv.org/pdf/1908.01314.pdf.
|
18 |
SOOMRO T A, AFIFI A J, JUNBIN G, et al. Strided U-net model: retinal vessels segmentation using dice loss[C]//2018 Digital Image Computing: Techniques and Applications (DICTA), 2018.
|
19 |
LEVINE R A . The art of data augmentation - Discussion[J]. Journal of Computational and Graphical Statistics, 2001, 10 (1): 51- 58.
doi: 10.1198/10618600152418719
|