Chinese Journal of Magnetic Resonance ›› 2022, Vol. 39 ›› Issue (2): 196-207.doi: 10.11938/cjmr20212921
• Articles • Previous Articles Next Articles
Yue QIU1,Sheng-dong NIE1,Long WEI2,*()
Received:
2021-05-21
Online:
2022-06-05
Published:
2021-09-16
Contact:
Long WEI
E-mail:weilong_2046@163.com
CLC Number:
Yue QIU, Sheng-dong NIE, Long WEI. Segmentation of Breast Tumors Based on Fully Convolutional Network and Dynamic Contrast Enhanced Magnetic Resonance Image[J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 196-207.
Table 1
The structure of CBP5-Net
结构 | 输入 | 输出 | 结构 | 输入 | 输出 | |||
block1 | conv | 1282*1 | 1282*32 | block4 | conv | 162*128 | 162*64 | |
BN | 1282*32 | 1282*32 | BN | 162*64 | 162*64 | |||
max-pooling | 1282*32 | 642*32 | max-pooling | 162*64 | 82*64 | |||
block2 | conv | 642*32 | 642*64 | block5 | conv | 82*64 | 82*32 | |
BN | 642*64 | 642*64 | BN | 82*32 | 82*32 | |||
max-pooling | 642*64 | 322*64 | max-pooling | 82*32 | 42*32 | |||
block3 | conv | 322*64 | 322*128 | flatten | 42*32 | 512 | ||
BN | 322*128 | 322*128 | dense | 512 | 64 | |||
max-pooling | 322*128 | 162*128 | dense | 64 | 2 |
Table 2
The details of RAU-Net
结构* | 输入 | 输出 |
conv | 1282*1 | 1282*64 |
conv | 1282*64 | 1282*64 |
max-pooling | 1282*64 | 642*64 |
RA_block | 642* 64 | 642*64 |
max-pooling | 642*64 | 322*64 |
conv | 322*64 | 322*128 |
conv | 322*128 | 322*128 |
max-pooling | 322*128 | 162*128 |
RA_block | 162*128 | 162*128 |
max-pooling | 162*128 | 82*128 |
conv | 82*256 | 82*256 |
conv | 82*256 | 82*256 |
up-conv | 82*256 | 162*128 |
merge | 162*128, 162*128 | 162*256 |
RA_block | 162*256 | 162*256 |
up-conv | 162*256 | 322*128 |
merge | 322*128, 322*128 | 322*256 |
conv | 322*256 | 322*128 |
conv | 322*128 | 322*128 |
up-conv | 322*128 | 642*64 |
merge | 642*64, 642*64 | 642*128 |
RA_block | 642*128 | 642*128 |
up-conv | 642*128 | 1282*64 |
merge | 1282*64, 1282*64 | 1282*128 |
conv | 1282*128 | 1282*64 |
conv | 1282*64 | 1282*2 |
conv | 1282*2 | 1282*1 |
Table 4
Comparison of evaluation indicators of the 5 methods
方法 | Dice系数 | 敏感度 | 特异性 | IoU | 耗时/s | ||
无后处理 | 有后处理 | ||||||
U-Net | 0.9001 | 0.9057 | 0.9469 | 0.9994 | 0.8425 | 1.8931 | |
ResU-Net | 0.9056 | 0.9142 | 0.9296 | 0.9988 | 0.8495 | 1.7236 | |
U-Net++ | 0.9175 | 0.9198 | 0.9201 | 0.9985 | 0.8601 | 2.0370 | |
RAU-Net | 0.9202 | 0.9254 | 0.9566 | 0.9990 | 0.8624 | 1.7936 | |
CBP5-Net+ RAU-Net | 大肿瘤 | 0.9506 | 0.9579 | 0.9580 | 0.9983 | 0.9001 | |
小肿瘤 | 0.9167 | 0.9197 | 0.9466 | 0.9988 | 0.8535 | 1.8162 | |
平均 | 0.9336 | 0.9388 | 0.9523 | 0.9985 | 0.8768 |
1 |
SIEGEL R L , MILLE R K D , JEMAL A . Cancer statistics, 2018[J]. CA: A Cancer Journal for Clinicians, 2018, 68 (1): 7- 30.
doi: 10.3322/caac.21442 |
2 |
FOROUZANFAR M H , FOREMAN K J , DELOSSANTOS A M , et al. Breast and cervical cancer in 187 countries betweem 1980 and 2010: a systematic analysis[J]. Lancet, 2011, 378 (9801): 1461- 1484.
doi: 10.1016/S0140-6736(11)61351-2 |
3 | WILD C P, WEIDERPASS E, STEWART B W. World cancer report: cancer research for cancer prevention[M]//Lyon: International Agency for Research on Cancer, 2020: 23-33. |
4 |
FANG Z Y , QIU X G . Distribution and risk factors of breast cancer[J]. Chinese General Practice, 2002, 5 (6): 429- 430.
doi: 10.3969/j.issn.1007-9572.2002.06.004 |
方志沂, 邱晓光. 乳腺癌的分布规律及其危险因素[J]. 中国全科医学, 2002, 5 (6): 429- 430.
doi: 10.3969/j.issn.1007-9572.2002.06.004 |
|
5 |
SMITH R A , COKKINDES V , BROOKS D , et al. Cancer screening in the United States, 2011[J]. CA-Cancer J Clin, 2011, 61 (1): 8- 30.
doi: 10.3322/caac.20096 |
6 | DIDKOWSKA J , WOJCIECHOWSKA U . WHO position paper on mammography screening[J]. Oncology in Clinical Practice, 2014, |
7 |
HEYWANG S H , HAHN D , SCHMIDT H , et al. MR imaging of the breast using gadolinium-DTPA[J]. J Comput Assist Tomogr, 1986, 10 (2): 199- 204.
doi: 10.1097/00004728-198603000-00005 |
8 |
MORRIS E A . Breast cancer imaging with MRI[J]. Radiol Clin N Am, 2002, 40 (3): 443- 466.
doi: 10.1016/S0033-8389(01)00005-7 |
9 |
BHOOSHAN N , GIGER M L , JANSEN S A , et al. Cancerous breast lesions on dynamic contrast-enhanced MR images: computerized characterization for image-based prognostic markers[J]. Radiology, 2010, 254 (3): 680- 690.
doi: 10.1148/radiol.09090838 |
10 | 杨骞. 基于DCE-MRI影像的乳腺癌早期诊断研究[D]. 杭州: 杭州电子科技大学, 2014. |
11 | EADIE L H , TAYLOR P , GIBSON A P . A systematic review of computer-assisted diagnosis in diagnostic cancer imaging[J]. Eur J Radiol, 2011, 81 (1): e70- e76. |
12 |
REIG B , HEACOCK L , GERAS K J , et al. Machine learning in breast MRI[J]. J Magn Reson Imaging, 2020, 52 (4): 998- 1018.
doi: 10.1002/jmri.26852 |
13 | TAN Z , HONG R R , YE S Z . A method to extract the region of interest in dynamic contrast-enhanced MR imaging of breast cancer[J]. Journal of Fuzhou University (Natural Science Edition), 2016, 44 (1): 33- 39. |
檀哲, 洪容容, 叶少珍. 一种提取乳腺癌DCE-MRI感兴趣区域的分割方法[J]. 福州大学学报(自然科学版), 2016, 44 (1): 33- 39. | |
14 |
QIAO M Y , SUO S T , CHENG F , et al. Three-dimensional breast tumor segmentation on DCE-MRI with a multilabel attention-guided joint-phase-learning network[J]. Comput Med Imag Grap, 2021, 90, 101909.
doi: 10.1016/j.compmedimag.2021.101909 |
15 | LIU T T , XU H Y , JIN W , et al. Medical image segmentation based on a hybrid region-based active contour model[J]. Comput Math Methods Med, 2014, 890725. |
16 |
AL-FARIS A Q , NGAH U K , ISA N A M , et al. Computer-aided segmentation system for breast MRI tumour using modified automatic seeded region growing (BMRI-MASRG)[J]. J Digit Imaging, 2014, 27 (1): 133- 144.
doi: 10.1007/s10278-013-9640-5 |
17 | CHEN X, WILLIAMS B M, VALLABHANENI S R, et al. Learning active contour models for medical image segmentation[C]//CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019. |
18 |
KANNAN S R , RAMATHILAGAM S , DEVI P , et al. Improved fuzzy clustering algorithms in segmentation of DC-enhanced breast MRI[J]. J Med Syst, 2012, 36 (1): 321- 333.
doi: 10.1007/s10916-010-9478-z |
19 |
BAI P R , LIU Q Y , LEI L , et al. A novel region-based level set method initialized with mean shift clustering for automated medical image segmentation[J]. Comput Biol Med, 2013, 43 (11): 1827- 1832.
doi: 10.1016/j.compbiomed.2013.08.024 |
20 |
PEREIRA S , PINTO A , ALVES V , et al. Brain tumor segmentation using convolutional neural networks in MRI images[J]. IEEE T Med Imaging, 2016, 35 (5): 1240- 1251.
doi: 10.1109/TMI.2016.2538465 |
21 | DOLZ J, AYED I B, DESROSIERS C. Dense multi-path U-Net for ischemic stroke lesion segmentation in multiple image modalities[C]//International MICCAI Brainlesion Workshop. Springer, Cham, 2018. |
22 |
LEE P Q , GUIDA A , PATTERSON S , et al. Model-free prostate cancer segmentation from dynamic contrast-enhanced MRI with recurrent convolutional networks: A feasibility study[J]. Comput Med Imag Grap, 2019, 75, 14- 23.
doi: 10.1016/j.compmedimag.2019.04.006 |
23 | AMIT G, HADAD O, ALPERT S, et al. Hybrid mass detection in breast MRI combining unsupervised saliency analysis and deep learning[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017. |
24 | BENJELLOUN M, ADOUI M E, LARHMAM M A, et al. Automated breast tumor segmentation in DCE-MRI using deep learning[C]//International Conference on Cloud Computing Technologies and Applications, 2018. |
25 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2015: 3431-3440. |
26 | ZHANG J, SAHA A, ZHU Z, et al. Breast tumor segmentation in DCE-MRI using fully convolutional networks with an application in radiogenomics[C]//Computer-aided Diagnosis, 2018. |
27 |
ZHANG J , SAHA A , ZHU Z , et al. Hierarchical convolutional neural networks for segmentation of breast tumors in MRI with application to radiogenomics[J]. IEEE T Med Imaging, 2019, 38 (2): 435- 447.
doi: 10.1109/TMI.2018.2865671 |
28 |
ADOUI M E , MAHMOUDI S A , LARHMAM M A , et al. MRI breast tumor segmentation using different encoder and decoder CNN architectures[J]. Computers, 2019, 8 (3): 52.
doi: 10.3390/computers8030052 |
29 | LOFFE S , SZEGEDY C . Batch normalization: accelerating deep network training by reducing internal covariate shift[J]. arXiv preprint, 2015, 1502.03167. |
30 | RONNEBERGER O , FISCHER P , BROX T . U-Net: convolutional networks for biomedical image segmentation[M]. Spring Internation Publishing, 2015, 234- 241. |
31 |
JIN Q G , MENG Z P , SUN C M , et al. RA-UNet: a hybrid deep attention-aware network to extract liver and tumor in CT scans[J]. Front Bioeng Biotechnol, 2020, 8, 605132.
doi: 10.3389/fbioe.2020.605132 |
32 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. |
33 | HU J , SHEN L , SUN G , et al. Squeeze-and-excitation networks[J]. arXiv preprint, 2017, 1709.01507. |
34 | SRIVASTAVA N , HINTON G , KRIZHEVSKY A , et al. Dropout: a simple way to prevent neural networks from overfitting[J]. J Mach Learn Res, 2014, 15 (1): 1929- 1958. |
35 |
BADRINARAYANAN V , KENDALL A , CIPOLLA R . SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE T Pattern Anal, 2017, 39 (12): 2481- 2495.
doi: 10.1109/TPAMI.2016.2644615 |
36 | ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Deep Learning in Medical Image Anylysis and Multimodal Learning for Clinical Decision Support, 2018: 3-11. |
[1] | Ying-shan WANG, Ao-qi DENG, Jin-ling MAO, Zhong-qi ZHU, Jie SHI, Guang YANG, Wei-wei MA, Qing LU, Hong-zhi WANG. Automatic Segmentation of Knee Joint Synovial Magnetic Resonance Images Based on 3D VNetTrans [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 303-315. |
[2] | Zhen-yu WANG, Ying-shan WANG, Jin-ling MAO, Wei-wei MA, Qing LU, Jie SHI, Hong-zhi WANG. Magnetic Resonance Images Segmentation of Synovium Based on Dense-UNet++ [J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 208-219. |
[3] | Ying LIU,Yi-yun GUO,Jing-cong CHEN,Hao-wei ZHANG. Automatic Precise Segmentation of Cerebellopontine Angle Tumor Based on Faster-RCNN and Level-Set Method [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 381-391. |
[4] | Qin-yi SHI,Fang YAN,Yang YANG,Yue-fu CHEN,Xiao-lang LIN,Yuan-jun WANG. Image Segmentation of Tooth and Alveolar Bone with the Level Set Model [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 182-193. |
[5] | GONG Jin-chang, WANG Yu, WANG Yuan-jun. A Method for Segmentation of Glioma on Multimodal Magnetic Resonance Images Based on Wavelet Fusion and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2020, 37(2): 131-143. |
[6] | XIAO Liang, LOU Yu-kun, ZHOU Hang-yu. A U-Net Network-Based Rapid Construction of Knee Models for Specific Absorption Rate Estimation [J]. Chinese Journal of Magnetic Resonance, 2020, 37(2): 144-151. |
[7] | ZHANG Xue-ying, WANG Cheng-long, XIE Hai-bin, ZHANG Cheng-xiu, MA Chao, LU Jian-ping, YANG Guang. Parallel Segmentation and Tracking Algorithm for Magnetic Resonance Angiography Images Based on GPU [J]. Chinese Journal of Magnetic Resonance, 2016, 33(4): 570-580. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||