Chinese Journal of Magnetic Resonance ›› 2022, Vol. 39 ›› Issue (1): 33-42.doi: 10.11938/cjmr20212903
• Articles • Previous Articles Next Articles
Zhi-chao WANG1,Ji-lei ZHANG2,Yu ZHAO3,Ting HUA4,Guang-yu TANG4,Jian-qi LI1,*()
Received:
2021-03-30
Online:
2022-03-05
Published:
2021-05-16
Contact:
Jian-qi LI
E-mail:jqli@phy.ecnu.edu.cn
CLC Number:
Zhi-chao WANG,Ji-lei ZHANG,Yu ZHAO,Ting HUA,Guang-yu TANG,Jian-qi LI. CEST Imaging of the Abdomen with Neural Network Fitting[J]. Chinese Journal of Magnetic Resonance, 2022, 39(1): 33-42.
Fig.1
Schematic of data processing. (a) Simulated background Z-spectra; (b) The acquired raw Z-spectrum, in which the red solid dots are inputted into the neural network to produce background reference Z-spectrum and water peak offset for correcting Z-spectrum later; (c) A simulated background Z-spectrum, in which the data marked as red solid dots are inputs for training and the complete Z-spectrum represented by blue line as well as the water peak offset are targets for training; (d) The feedforward neural network generated and applied; (e) The water peak offset and the background Z-spectrum (marked as bluish violet dashed curve) are obtained from the network and used to correct the raw Z-spectrum. The shaded part indicated by the arrow is the difference between bluish violet dashed curve and red solid curve, which is contributed from APT effect; (f) The APT map
Fig.2
The CEST imaging results of egg white. (a) T1 weighted image; (b) B0 map based on neural network; (c) The corrected Z-spectrum in egg white (red solid curve) and the background reference Z-spectrum (bluish violet dashed curve) obtained by neural network prediction, where the green arrow and yellow arrow indicate the positions of APT and NOE exchange, respectively; (d) MTRasym map of egg white; (e) APT map; (f) NOE map
Fig.3
Abdominal B0 maps and the corresponding CEST results of a healthy volunteer obtained by gradient recalled echo (GRE) sequence (the 2nd row) and neural network based method (the 3rd row). (a) The reference image while the CEST saturation radio frequency pulse was not applied; (b) & (e) B0 maps obtained by GRE sequence and neural network fitting, respectively; (c) & (f) MTRasym maps based on GRE sequence and neural network fitting, respectively; (d) & (g) The Z-spectrum analysis of tissue located in the orange circle in the left kidney based on GRE sequence and neural network fitting, respectively
Fig.4
The CEST results of a healthy volunteer obtained by the method based on neural network. (a) The corrected Z-spectrum (red solid curve) and background reference Z-spectrum (bluish violet dashed line), where the green arrow and yellow arrow indicate the positions APT and NOE, respectively; (b) APT map; (c) NOE map; (d) MTRasym map; (e) APTREX map; (f) NOEREX map
1 |
FORSéN S , HOFFMAN R A . Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance[J]. J Chem Phys, 1963, 39 (11): 2892- 2901.
doi: 10.1063/1.1734121 |
2 | CHEN L Q , PAGEL M D . Evaluating pH in the extracellular tumor microenvironment using CEST MRI and other imaging methods[J]. Adv Radio, 2015, 206405. |
3 | TAO Q , YI P W , WEI G J , et al. pH Imaging based on chemical exchange saturation transfer: Principles, methods, applications and recent progresses[J]. Chinese J Magn Reson, 2018, 35 (4): 505- 519. |
陶泉, 易佩伟, 魏国境, 等. 基于CEST机制的pH成像方法、原理和应用[J]. 波谱学杂志, 2018, 35 (4): 505- 519. | |
4 |
ZHOU J Y , PAYEN J F , WILSON D A , et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nat Med, 2003, 9 (8): 1085- 1090.
doi: 10.1038/nm907 |
5 | YANG Y G , CHEN Z , CAI C B , et al. Factors affecting chemical exchange saturation transfer imaging on 1.5 T clinical MRI scanners[J]. Chinese J Magn Reson, 2017, 34 (3): 275- 282. |
杨永贵, 陈忠, 蔡聪波, 等. 1.5 T磁共振化学交换饱和转移成像的影响因素分析[J]. 波谱学杂志, 2017, 34 (3): 275- 282. | |
6 |
ZHOU J , BLAKELEY J O , HUA J , et al. Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging[J]. Magn Reson Med, 2008, 60 (4): 842- 849.
doi: 10.1002/mrm.21712 |
7 | WEI G J , Y P W , TAO Q , et al. Comparisons of different CEST quantification metrics applied in acute parkinson's disease mouse model[J]. Chinese J Magn Reson, 2019, 36 (2): 195- 207. |
魏国境, 易佩伟, 陶泉, 等. CEST成像不同量化方式在急性帕金森氏病小鼠模型研究中的应用比较[J]. 波谱学杂志, 2019, 36 (2): 195- 207. | |
8 |
ZHANG J X , ZHU W Z , TAIN R W , et al. Improved differentiation of low-grade and high-grade gliomas and detection of tumor proliferation using APT contrast fitted from Z-spectrum[J]. Mol Imaging Biol, 2018, 20 (4): 623- 631.
doi: 10.1007/s11307-017-1154-y |
9 | CAI K , SINGH A , POPTANI H , et al. CEST signal at 2 ppm (CEST@2 ppm) from Z-spectral fitting correlates with creatine distribution in brain tumor[J]. NMR Biomed, 2015, 28 (1): 1- 8. |
10 |
JONES K M , POLLARD A C , PAGEL M D . Clinical applications of chemical exchange saturation transfer (CEST) MRI[J]. J Magn Reson Imaging, 2018, 47 (1): 11- 27.
doi: 10.1002/jmri.25838 |
11 |
ZHOU J Y , HEO H Y , KNUTSSON L , et al. APT-weighted MRI: Techniques, current neuro applications, and challenging issues[J]. J Magn Reson Imaging, 2019, 50 (2): 347- 364.
doi: 10.1002/jmri.26645 |
12 |
SEO N , JEONG H K , CHOI J Y , et al. Liver MRI with amide proton transfer imaging: feasibility and accuracy for the characterization of focal liver lesions[J]. Eur Radiol, 2021, 31 (1): 222- 231.
doi: 10.1007/s00330-020-07122-y |
13 |
CHEN S Z , YUAN J , DENG M , et al. Chemical exchange saturation transfer (CEST) MR technique for in-vivo liver imaging at 3.0 tesla[J]. Eur Radiol, 2016, 26 (6): 1792- 1800.
doi: 10.1007/s00330-015-3972-0 |
14 |
LIN Y , LUO X J , YU L , et al. Amide proton transfer-weighted MRI for predicting histological grade of hepatocellular carcinoma: comparison with diffusion-weighted imaging[J]. Quant Imaging Med Surg, 2019, 9 (10): 1641- 1651.
doi: 10.21037/qims.2019.08.07 |
15 |
WANG Y , GRIMM R C , FELMLEE J P , et al. Algorithms for extracting motion information from navigator echoes[J]. Magn Reson Med, 1996, 36 (1): 117- 123.
doi: 10.1002/mrm.1910360120 |
16 |
KIM M , GILLEN J , LANDMAN B A , et al. Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments[J]. Magn Reson Med, 2009, 61 (6): 1441- 1450.
doi: 10.1002/mrm.21873 |
17 |
SUN P Z , FARRAR C T , SORENSEN A G . Correction for artifacts induced by B0 and B1 field inhomogeneities in pH-sensitive chemical exchange saturation transfer (CEST) Imaging[J]. Magn Reson Med, 2007, 58 (6): 1207- 1215.
doi: 10.1002/mrm.21398 |
18 |
LI W , AVRAM A V , WU B , et al. Integrated Laplacian-based phase unwrapping and background phase removal for quantitative susceptibility mapping[J]. NMR Biomed, 2014, 27 (2): 219- 227.
doi: 10.1002/nbm.3056 |
19 |
LIM I A L , LI X , JONES C K , et al. Quantitative magnetic susceptibility mapping without phase unwrapping using WASSR[J]. Neuroimage, 2014, 86, 265- 279.
doi: 10.1016/j.neuroimage.2013.09.072 |
20 |
MELACINI G , KAPTEIN R , BOELENS R . Editing of chemical exchange-relayed NOEs in NMR experiments for the observation of protein-water interactions[J]. J Magn Reson, 1999, 136 (2): 214- 218.
doi: 10.1006/jmre.1998.1646 |
21 |
JIN T , WANG P , ZONG X , et al. MR imaging of the amide-proton transfer effect and the pH-insensitive nuclear overhauser effect at 9.4 T[J]. Magn Reson Med, 2013, 69 (3): 760- 770.
doi: 10.1002/mrm.24315 |
22 |
ZAISS M , SCHMITT B , BACHERT P . Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian-line-fit analysis of Z-spectra[J]. J Magn Reson, 2011, 211 (2): 149- 155.
doi: 10.1016/j.jmr.2011.05.001 |
23 |
MORRISON C , HENKELMAN R M . A model for magnetization transfer in tissues[J]. Magn Reson Med, 1995, 33 (4): 475- 482.
doi: 10.1002/mrm.1910330404 |
24 |
ZAISS M , SCHUPPERT M , DESHMANE A , et al. Chemical exchange saturation transfer MRI contrast in the human brain at 9.4 T[J]. Neuroimage, 2018, 179, 144- 155.
doi: 10.1016/j.neuroimage.2018.06.026 |
25 |
HENKELMAN R M , HUANG X , XIANG Q S , et al. Quantitative interpretation of magnetization transfer[J]. Magn Reson Med, 1993, 29 (6): 759- 766.
doi: 10.1002/mrm.1910290607 |
26 |
WOESSNER D E , ZHANG S R , MERRITT M E , et al. Numerical solution of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI[J]. Magn Reson Med, 2005, 53 (4): 790- 799.
doi: 10.1002/mrm.20408 |
27 |
ZAISS M , ZU Z , XU J , et al. A combined analytical solution for chemical exchange saturation transfer and semi-solid magnetization transfer[J]. NMR Biomed, 2015, 28 (2): 217- 230.
doi: 10.1002/nbm.3237 |
28 |
ZAISS M , WINDSCHUH J , PAECH D , et al. Relaxation-compensated CEST-MRI of the human brain at 7 T: Unbiased insight into NOE and amide signal changes in human glioblastoma[J]. Neuroimage, 2015, 112, 180- 188.
doi: 10.1016/j.neuroimage.2015.02.040 |
29 |
TOGAO O , KEUPP J , HIWATASHI A , et al. Amide proton transfer imaging of brain tumors using a self-corrected 3D fast spin-echo Dixon method: Comparison with separate B0 correction[J]. Magn Reson Med, 2017, 77 (6): 2272- 2279.
doi: 10.1002/mrm.26322 |
30 | KIM H , WU Y , VILLANO D , et al. Analysis protocol for the quantification of renal pH using chemical exchange saturation transfer (CEST) MRI[J]. Methods Mol Biol, 2021, 2216, 667- 688. |
31 |
KLEIN S , STARING M , MURPHY K , et al. elastix: A toolbox for intensity-based medical image registration[J]. IEEE Trans Med Imaging, 2010, 29 (1): 196- 205.
doi: 10.1109/TMI.2009.2035616 |
32 | SHAMONIN D P , BRON E E , LELIEVELDT B P F , et al. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease[J]. Front Neuroinform, 2013, 7, 50. |
[1] | Ju-min ZHANG,Shi-zhen CHEN,Xin ZHOU. Dual-modal MRI T1-T2 Contrast Agent Based on Dynamic Organic Gadolinium Nanoparticles [J]. Chinese Journal of Magnetic Resonance, 2022, 39(1): 11-19. |
[2] | WANG Han-wei, WU Hao, TIAN Jing, ZHANG Jun-feng, ZHONG Peng, CHEN Li-zhao, WANG Shu-nan. The Diagnostic Value of Quantitative Parameters of T2/FLAIR Mismatch Sign in Evaluating the Molecular Typing of Lower-grade Gliomas [J]. Chinese Journal of Magnetic Resonance, 2022, 39(1): 56-63. |
[3] | Long XIAO,Xiao-lei ZHU,Ye-qing HAN,Shi-zhen CHEN,Xin ZHOU. Design and Application of Micellar Magnetic Resonance Imaging Molecular Probe [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 474-490. |
[4] | Shi-ju YAN,Yong-sen HAN,Guang-yu TANG. An Improved Level Set Algorithm for Prostate Region Segmentation [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 356-366. |
[5] | Chong-wu WANG,Xi HUANG,Lei SHI,Shi-zhen CHEN,Xin ZHOU. Cathepsin B Triggered Hyperpolarization 129Xe MRI Probe for Ultra-Sensitive Lung Cancer Cells Detection [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 336-344. |
[6] | Ying LIU,Yi-yun GUO,Jing-cong CHEN,Hao-wei ZHANG. Automatic Precise Segmentation of Cerebellopontine Angle Tumor Based on Faster-RCNN and Level-Set Method [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 381-391. |
[7] | Ying-dan HU,Yue CAI,Xu-xia WANG,Si-jie LIU,Yan KANG,Hao LEI,Fu-chun LIN. Magnetic Resonance Imaging the Brain Structures Involved in Nicotine Susceptibility in Rats [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 345-355. |
[8] | HE Hong-yan, WEI Shu-feng, WANG Hui-xian, YANG Wen-hui. Matrix Gradient Coil: Current Research Status and Perspectives [J]. Chinese Journal of Magnetic Resonance, 2021, 38(1): 140-153. |
[9] | XIN Hong-tao, WU Guang-yao, WEN Zhi, LEI Hao, LIN Fu-chun. Effects of Antiretroviral Therapy on Brain Gray Matter Volumes in AIDS Patients [J]. Chinese Journal of Magnetic Resonance, 2021, 38(1): 69-79. |
[10] | HU Ge-li, DENG Ye-hui, WANG Kun, JIANG Tian-zi. A New MRI System Architecture Based on 5G Remote Control and Processing [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 490-495. |
[11] | WANG Wan-ting, SU Shi, JIA Sen, LIANG Dong, WANG Hai-feng. Reconstruction of Simultaneous Multi-Slice MRI Data by Combining Virtual Conjugate Coil Technology and Convolutional Neural Network [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 407-421. |
[12] | WU Ming-di, FENG Jie, JIA Hui-hui, WU Ji-zhi, ZHANG Xin, CHANG Yan, YANG Xiao-dong, SHENG Mao. MRI-Based Morphological Quantification of Developmental Dysplasia of the Hip in Children [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 434-446. |
[13] | LIAO Zhi-wen, CHEN Jun-fei, YANG Chun-sheng, ZHANG Zhi, CHEN Li, XIAO Li-zhi, CHEN Fang, LIU Chao-yang. A Design Scheme for 1H/31P Dual-Nuclear Parallel MRI Coil [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 273-282. |
[14] | ZHOU You, YANG Yang, SONG Li-qiang, BI Tian-tian, WANG Yue, ZHAO Ying. Effects of Panax quinquefolius L.-Acorus Tatarinowii on Cognitive Deficits and Brain Morphology of Type 1 Diabetic Rats [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 332-348. |
[15] | LOU Yun-zhong, LIU Ying, JIANG Hua, ZHANG Hao-wei. A Deep Learning Algorithm for Classifying Meningioma and Auditory Neuroma in the Cerebellopontine Angle from Magnetic Resonance Images [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 300-310. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||