Chinese Journal of Magnetic Resonance ›› 2021, Vol. 38 ›› Issue (3): 336-344.doi: 10.11938/cjmr20202828
• Articles • Previous Articles Next Articles
Chong-wu WANG1,2,Xi HUANG1,Lei SHI1,Shi-zhen CHEN1,Xin ZHOU1,*()
Received:
2020-04-25
Online:
2021-09-05
Published:
2020-05-14
Contact:
Xin ZHOU
E-mail:xinzhou@wipm.ac.cn
CLC Number:
Chong-wu WANG,Xi HUANG,Lei SHI,Shi-zhen CHEN,Xin ZHOU. Cathepsin B Triggered Hyperpolarization 129Xe MRI Probe for Ultra-Sensitive Lung Cancer Cells Detection[J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 336-344.
1 |
López-otín C , Matrisian L M . Emerging roles of proteases in tumorsuppression[J]. Nat Rev Cancer, 2007, 7 (10): 800- 808.
doi: 10.1038/nrc2228 |
2 |
Sinha A A , Jamuar M P , Wilson M J , et al. Plasma membrane association of cathepsin B in human prostate cancer: biochemical and immunogold electron microscopic analysis[J]. Prostate, 2001, 49 (3): 172- 184.
doi: 10.1002/pros.1132 |
3 |
MAHMOOD U , TUNG C H , BOGDANOV A JR , et al. Near-infrared optical imaging of protease activity for tumor detection[J]. Radiology, 1999, 213 (3): 866- 870.
doi: 10.1148/radiology.213.3.r99dc14866 |
4 |
HABIBOLLAHI P , FIGUEIREDO J , HEIDARI P , et al. Optical imaging with a Cathepsin B activated probe for the enhanced detection of esophageal adenocarcinoma by dual channel fluorescent upper GI endoscopy[J]. Theranostics, 2012, 2 (2): 227- 234.
doi: 10.7150/thno.4088 |
5 |
RYAN L S , LIPPERT A R . Ultrasensitive chemiluminescent detection of cathepsin B: insights into the new frontier of chemiluminescent imaging[J]. Angew Chem Int Ed Engl, 2018, 57 (3): 622- 624.
doi: 10.1002/anie.201711228 |
6 |
TASSALI N , KOTERA N , BOUTIN C , et al. Smart detection of toxic metal ions, Pb2+ and Cd2+, using a 129Xe NMR-based sensor[J]. Anal Chem, 2014, 86 (3): 1783- 1788.
doi: 10.1021/ac403669p |
7 | GAO D L , SUN P , ZHANG X , et al. Interactions between albumin and fatty acids studied by NMR spectroscopy[J]. Chinese J Magn Reson, 2018, 35 (3): 338- 344. |
高东莉, 孙鹏, 张许, 等. 运用NMR研究白蛋白与脂肪酸的相互作用[J]. 波谱学杂志, 2018, 35 (3): 338- 344. | |
8 | PALANIAPPAN K K , FRANCIS M B , PINES A , et al. Molecular sensing using hyperpolarized xenon NMR spectroscopy[J]. Israel J Chem, 2014, 54 (1/2): 104- 112. |
9 |
WALKER T , HAPPER W . Spin-exchange optical pumping of noble-gas nuclei[J]. Rev Mod Phys, 1997, 69 (2): 629- 642.
doi: 10.1103/RevModPhys.69.629 |
10 |
ZHOU X , SUN X P , LUO J , et al. Production of hyperpolarized Xe-129 gas without nitrogen by optical pumping at Cs-133 D-2 line in flow system[J]. Chin Phys Lett, 2004, 21 (8): 1501- 1503.
doi: 10.1088/0256-307X/21/8/024 |
11 |
ZHOU X , GRAZIANI D , PINES A . Hyperpolarized xenon NMR and MRI signal amplification by gas extraction[J]. Proc Natl Acad Sci U S A, 2009, 106 (40): 16903- 16906.
doi: 10.1073/pnas.0909147106 |
12 | ZHAO X C , SUN X P , ZHOU X , et al. Measuring polarization of hyperpolarized xenon-129 gas with low-field NMR[J]. Chinese J Magn Reson, 2016, 33 (3): 458- 467. |
赵修超, 孙献平, 周欣, 等. 超极化气体氙-129的低场NMR测量[J]. 波谱学杂志, 2016, 33 (3): 458- 467. | |
13 |
WANG Y F , DMOCHOWSKI I J . An expanded palette of xenon-129 NMR biosensors[J]. Acc Chem Res, 2016, 49 (10): 2179- 2187.
doi: 10.1021/acs.accounts.6b00309 |
14 | YUAN C L , GUO Q N , CHEN S Z , et al. A novel molecular cage for hyperpolarized 129Xe based on cucurbit [6] uril nanoparticles[J]. Chinese J Magn Reson, 2019, 36 (4): 472- 480. |
袁晨露, 郭茜旎, 陈世桢, 等. 新型葫芦[6]脲纳米颗粒超极化129Xe"分子笼"研究[J]. 波谱学杂志, 2019, 36 (4): 472- 480. | |
15 |
TASSALI N , KOTERA N , BOUTIN C , et al. Smart detection of toxic metal ions, Pb2+and Cd2+, using a Xe-129 NMR-based sensor[J]. Anal Chem, 2014, 86 (3): 1783- 1788.
doi: 10.1021/ac403669p |
16 |
ZHANG J , JIANG W P , LUO Q , et al. Rational design of hyperpolarized xenon NMR molecular sensor for the selective and sensitive determination of zinc ions[J]. Talanta, 2014, 122, 101- 105.
doi: 10.1016/j.talanta.2014.01.023 |
17 |
GUO Q N , ZENG Q B , JIANG W P , et al. A molecular imaging approach to mercury sensing based on hyperpolarized Xe-129 molecular clamp probe[J]. Chem Eur J, 2016, 22 (12): 3967- 3970.
doi: 10.1002/chem.201600193 |
18 |
YANG S J , JIANG W P , REN L L , et al. Biothiol xenon MRI sensor based on thiol-addition reaction[J]. Anal Chem, 2016, 88 (11): 5835- 5840.
doi: 10.1021/acs.analchem.6b00403 |
19 |
ZENG Q B , GUO Q N , YUAN Y P , et al. Mitochondria targeted and intracellular biothiol triggered hyperpolarized 129Xe magnetofluorescent biosensor[J]. Anal Chem, 2017, 89 (4): 2288- 2295.
doi: 10.1021/acs.analchem.6b03742 |
20 | BERTHAULT P , DESVAUX H , WENDLINGER T , et al. Effect of pH and counterions on the encapsulation properties of xenon in water-soluble cryptophanes[J]. Chemistry, 2010, 16 (43): 41- 46. |
21 |
RIGGLE B A , WANG Y , DMOCHOWSKI I J . A "smart" Xe-129 NMR biosensor for pH-dependent cell labeling[J]. J Am Chem Soc, 2015, 137 (16): 5542- 5548.
doi: 10.1021/jacs.5b01938 |
22 |
WEI Q , SEWARD G K , HILL P A , et al. Designing Xe-129 NMR biosensors for matrix metalloproteinase detection[J]. J Am Chem Soc, 2006, 128 (40): 13274- 13283.
doi: 10.1021/ja0640501 |
23 |
CHAMBERS J M , HILL P A , AARON J A , et al. Cryptophane xenon-129 nuclear magnetic resonance biosensors targeting human carbonic anhydrase[J]. J Am Chem Soc, 2009, 131 (2): 563- 569.
doi: 10.1021/ja806092w |
24 |
YANG S J , YUAN Y P , JIANG W P , et al. Hyperpolarized Xe-129 magnetic resonance imaging sensor for H2S[J]. Chemistry-A European Journal, 2017, 23 (32): 7648- 7652.
doi: 10.1002/chem.201605768 |
25 |
ROY V , BROTIN T , DUTASTA J P , et al. A cryptophane biosensor for the detection of specific nucleotide targets through xenon NMR spectroscopy[J]. Chemphyschem, 2007, 8 (14): 2082- 2085.
doi: 10.1002/cphc.200700384 |
26 |
KHAN N S , RIGGLE B A , SEWARD G K , et al. Cryptophane-folate biosensor for Xe-129 NMR[J]. Bioconjugate Chem, 2015, 26 (1): 101- 109.
doi: 10.1021/bc5005526 |
27 |
PALANIAPPAN K K , RAMIREZ R M , BAJAJ V S , et al. Molecular imaging of cancer cells using a bacteriophage-based 129Xe NMR biosensor[J]. Angew Chem Int Ed, 2013, 52 (18): 4849- 4853.
doi: 10.1002/anie.201300170 |
28 |
ROSSELLA F , ROSE H M , WITTE C , et al. Design and characterization of two bifunctional cryptophane A-based host molecules for xenon magnetic resonance imaging applications[J]. Chempluschem, 2014, 79 (10): 1463- 1471.
doi: 10.1002/cplu.201402179 |
29 |
WITTE C , MARTOS V , ROSE H M , et al. Live-cell MRI with xenon Hyper-CEST biosensors targeted to metabolically labeled cell-surface glycans[J]. Angew Chem Int Ed, 2015, 54 (9): 2806- 2810.
doi: 10.1002/anie.201410573 |
30 |
ROSE H M , WITTE C , ROSSELLAA F , et al. Development of an antibody-based, modular biosensor for Xe-129 NMR molecular imaging of cells at nanomolar concentrations[J]. Proc Natl Acad Sci U S A, 2014, 111 (32): 11697- 11702.
doi: 10.1073/pnas.1406797111 |
31 |
SCHLUNDT A , KILIAN W , BEYERMANN M , et al. A xenon-129 biosensor for monitoring MHC-peptide interactions[J]. Angew Chem Int Ed, 2009, 48 (23): 4142- 4145.
doi: 10.1002/anie.200806149 |
32 |
BOUTIN C , STOPIN A , LENDA F , et al. Cell uptake of a biosensor detected by hyperpolarized Xe-129 NMR: The transferrin case[J]. Bioorg Med Chem, 2011, 19 (13): 4135- 4143.
doi: 10.1016/j.bmc.2011.05.002 |
33 |
KOTERA N , DUBOST E , MILANOLE G , et al. A doubly responsive probe for the detection of Cys4-tagged proteins[J]. Chem Commun, 2015, 51 (57): 11482- 11484.
doi: 10.1039/C5CC04721H |
34 |
BROKER L E , HUISMAN C , SPAN S W , et al. Cathepsin B mediates caspase-independent cell death induced by microtubule stabilizing agents in non-small cell lung cancer cells[J]. Cancer Research, 2004, 64, 27- 30.
doi: 10.1158/0008-5472.CAN-03-3060 |
[1] | Jia-min WU,Yu-cheng HE,Zheng XU,Yan-he ZHU,Wen-zheng JIANG. A Wide-Band Matching Method for Radio Frequency Coils Used in Soil Moisture Measurement [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 414-423. |
[2] | Zi-hao WANG,He XU,Tao WANG,Shan-zhong YANG,Yun-sheng DING,Hai-bing WEI. NMR Spectroscopic Studies on (exo, endo) C-2 Monosubstituted Norbornene Derivatives [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 323-335. |
[3] | Yi LI,Jia-xiang XIN,Jia-chen WANG,Da-xiu WEI,Ye-feng YAO. Preparation Efficiency of Nuclear Spin Singlet State: A Comparison Among Three Pulse Sequences [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 227-238. |
[4] | Jin-bo YU,Cai ZHANG,Ze-ting ZHANG,Guo-hua XU,Cong-gang LI. Interactions Between α-synuclein and Intact Mitochondria Studied by NMR [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 164-172. |
[5] | Wei ZHANG,Yi-ming WU,Wei-ping CUI,Liang XIAO. Correction for the Nuclear Magnetic Resonance Porosity in Heavy Oil-bearing Reservoirs [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 204-214. |
[6] | Kun MENG,Sheng-jian WANG,Zong-an XUE,Rui-qing HOU,Liang XIAO. Quantitative Evaluation of Shale Pore Structure Using Nuclear Magnetic Resonance Data [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 215-226. |
[7] | Zhi-wu ZHANG,Ju YANG,Ze-feng NIE,Shang-xiang YE,Xu DONG,Chun TANG. Development of a Temperature Senor Based on 19F-labeled Phosphorylated Ubiquitin [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 173-181. |
[8] | Xin-yi ZHAO,Dong HAN,Hong-jun LUO,Wen-bin SHEN,Gong-jun YANG. Spectroscopic Studies of Delafloxacin Meglumine [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 268-276. |
[9] | Xiao-wen CHEN,Bi-ling HUANG,Shao-hua HUANG,Yu-fen ZHAO. An NMR Study on the clpC Operon Binding Region of Transcription Factor CtsR from Bacillus subtilis [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 155-163. |
[10] | LIAO Huai-yu, HAN Hong-yuan, CHEN Fei, ZHANG Hai-yan, YANG Jing, ZHAO Tian-zeng. An NMR Study on Two New β-Dihydroagrofuran Compounds in Celastrus angulatus Maxim [J]. Chinese Journal of Magnetic Resonance, 2021, 38(1): 101-109. |
[11] | WANG Rui-di, XU Bei-bei, SONG Yan-hong, WANG Xue-lu, YAO Ye-feng. Methanol-Water Interaction in Photocatalytic Methanol Reforming ─ An Operando NMR Study [J]. Chinese Journal of Magnetic Resonance, 2021, 38(1): 43-57. |
[12] | KE Han-ping, CAI Hong-hao. High-Resolution Localized NMR Spectroscopy Based on Hadamard-Encoding [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 524-532. |
[13] | LIU Si, AN Yan-peng, TANG Hui-ru. Effects of Lyophilization on the Metabonomic Phenotypes of Human Biofluids Characterized with NMR Analysis [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 484-489. |
[14] | LI Ying-jun, YANG Hong-jing, LIU Ji-hong, JIN Kun, LIN Le-di, LIU Xue-jie. Assignments of NMR Spectral Data of a Novel Carbazole-Triazinoindole Based N-Acylhydrazone Derivative [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 496-504. |
[15] | ZHAN Jia-ying, TU Zhang-ren, DU Xiao-feng, YUAN Bin, GUO Di, QU Xiao-bo. Progresses on Low-Rank Reconstruction for Non-Uniformly Sampled NMR Spectra [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 255-272. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||